APPENDIX
Further Material on Panel Methods and Strip Theory
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Panel Methods
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During the last decade, advancements in computer technology have made
possible the development of new classes of three-dimensional numerical tools
for analyzing problems in Naval Architecture, such as ship wave resistance
and motions.

Early attempts to model ships in potential flow focused on variations of
slender body and strip theory to study simplified body geometries and free
surface conditions.

As computing power increased, so did the development of three-dimenstonal
methods. Of these, considerable attention has been received by boundary
element or panel methods.
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Panel Methods at a Glance

» Distribute sources and dipoles on body
* Discretize

» Green’s Theorem gives system of equations
for singularity strength on each panel in
terms of boundary conditions

» Forces on body found from flow solution
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Panel methods attempt to solve the Laplace equation in the fluid domain by
distributing sources and dipoles on the body and, in some methods, on the free
surface.

These surfaces are divided into panels, each one associated with a source and
dipole distribution of unknown strength.

Green'’s theorem relates the source and dipole distribution strength to the
potential and normal velocity on each panel.

The boundary conditions to be applied to the problem are often linearized and
they determine either the potential or the normal velocity on each panel.

Having solved for the unknown source and dipole strengths, Green’s theorem
may be used to find the potential at any point in the fluid domain.

Hydrodynamic forces are found from pressure integration and are used with
Newton’s Law to determine motions.
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Cases to be Examined

* Unbounded fluid flows

~ Steady motion through unsteady flow field
 Lifting flows

— Forced motion in free stream
* Wave flows

— Ship under steady motion in calm water

— Free motions of budy in waves
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Panel methods can ultimately solve complex problems involving free motions
of forward moving vessels with lifting surfaces in incident waves. Jumping
right in to the formulation of such a problem, however, would be rather
overwhelming.

We will, therefore, start by formulating a simple problem and move on to
progressively more complex cases.
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Flow in Unbounded Fluid

Non-lifting body in unsteady flow
Unsteady incident

- /

Total potential: P = Q + ¢ —Ux

;

Free stream

Perturbation
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Body advancing with speed U in an unsteady flow field
Body-fixed coordinate system.
Unit normal n, to body surface Sg, pointing out of fluid.
Reasons to solve this problem:
* Get pressure distribution on body
* Determine added mass
* Introduce techniques to be used with more complex problems
Separate total potential into:
» free stream potential
« incident potential excluding free stream

» perturbation from incident potential
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Body Boundary Condition

(No flux condition)
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The normal velocity of fluid must be zero in the body—ﬁxed coordinate system.

Using the decomposition of total potential into its components, it follows that
the normal velocity of the perturbation flow must be equal and opposite to the
the incident flow, which is given.
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Boundary Integral Equation

Green’s Theorem for field points on
body surface, Sy
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The application of Green’s second identity transforms the boundary value
problem stated previously into a boundary integral equation. This facilitates
the numerical solution as the entire fluid volume does not have to be
discretized.

The integral over the part of the control surface at infinity vanishes because
the flow sufficiently far from the body is undisturbed. The integrals over the
connecting surfaces S* and S cancel each other out. So what is left defines the
potential on the body in terms of a source (G) and dipole (dG/dn) distribution
on the body surface. The strength of the source distribution is given by the
magnitude of the normal velocity on the body, while the strength of the dipole
distribution is equal to the magnitude of the potential on the body.

For this particular problem, d¢/dn is given from the boundary condition, while
¢ is unknown.
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Numerical Solution

Discretize integral equation and
substitute body BC
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The body is discretized into n panels, each of area A;.

The singularity distribution on each panel can be constant, or of higher order.
In any case, Gy is the potential at the control point of panel i, due the source
distribution on panel j.

Having a higher order distribution on each panel results in less panels needed
for convergence and leads to a more robust way of calculating the tangential
velocities on the body, if needed. More on higher order distributions later.

In the above system of n linear equations, the RHS is known from the body
boundary condition. The potential on each panel may thus be found by a
standard linear solver. The flow is hence completely specified.
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Hydrodynamic Forces and
Moments
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From the potential and its gradient on the body, it is straightforward to
determine the pressure distribution and hence the hydrodynamic forces and
moments.

These forces are often linearized by assuming small perturbations about the
free stream.
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Lifting Flows

Forced motions in steady free stream
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Lifting surfaces common in Naval Architecture include hydrofoils, rudders,
control fins, sailboat keels and sails, and catamaran hulls.

A special treatment is needed for such lift-producing bodies because the
potential flow solution to the problem as previously formulated would include
infinite velocities at the sharp trailing edge of the foil under angle of attack.

In order to ensure a smooth flow at the trailing edge, which in real life is
attained due to the presence § viscosity, the wake shed from the hydrofoil must
be modeled.

The problem examined here involves a hydrofoil performing small motions
about a steady forward motion. So in addition to the effect of lift, there is a
new element in the formulation of the boundary value problem. The body now
moves with respect to the coordinate system, which is translating with a steady
velocity, U.
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Wake Model

Thin free vortex sheet

Across wake:

« Continuous normal velocity
* Discontinuous potential (jump=A®)
e Zero pressure jump:
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(Bemou]li, linearized about free stream)
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The wake is modeled as a free vortex sheet shed downstream from the trailing
edge of the foil. Mathematically this may be defined as a dipole distribution
on a surface Sy, of zero thickness.

The operator A denotes a jump in a quantity from one side of the wake to the
other.

Across the wake we have continuity of normal velocity and a jump in
potential. The pressure on both sides of the wake should be equal because
otherwise we would have infinite particle acceleration since the wake is
infinitesimally thin,

The wake can be shed either straight back, following the free stream, or it
could have each point follow the total velocity induced at its location by both
the foil and the rest of the wake. In general, however, the additional
computational load and stability problems do not justify the slight increase in
accuracy achieved by tracking the exact position of the wake.
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Kutta Condition

» Requires zero pressure jump at trailing edge
of foil.

* This is ensured by continuity of potential,
together with the condition of zero pressure
jump across the wake

(I)TE:body =@y ke
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The flow past a lifting body cannot be uniquely determined unless some
additional condition is specified which sets the amount of circulation produced
by the foil. As previously formulated, (without the wake) there would be no
circulation and the velocity at the sharp trailing edge of the foil would be
infinite.

This situation may be avoided if a Kutta condition requiring tangential
velocities at the trailing edge is enforced. An alternate way of enforcing this
condition is to require continuous pressure at the trailing edge. In fact, this
condition is preferred here because it can be easily linearized about the free
stream.

The requirement of zero pressure jump at the trailing edge in the wake is
already satisfied as we saw before. Thus, by also requiring continuity of
potential from the body into the wake at the trailing edge, the Kutta condition
of zero pressure jump on the body is automatically satisfied.
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Forced Motions

Displacement about frame of reference
due to translation and rotation:

g(f,t)=5T(t)+gR(t)Xf

ET =(§1a§2’§3) ER=(54’§S’§6)
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Since for this problem the body is not fixed with respect to the coordinate
system, we need to define its motions.

The rigid body motions in six degree of freedom can be fully described by a
translation and a rotation vector.

The displacement of any point on the body with respect to its original position
may be described in terms of these two vectors and its original displacement
from the origin.
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Body Boundary Conditions

Applied at exact body surface:
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Linearized and applied at mean position of body
(assuming small body motions)
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The boundary condition is defined in terms of the body motions in order to
preserve the zero normal flux requirement.

This condition should, strictly, be applied to the exact position of the body
surface. This would require the re-discretization of the body surface at each
time step. Although some panel methods take this approach to the problem,
the solution becomes much easier numerically if the motions can be assumed
small and can be linearized about the mean position of the body.

The linear body boundary condition is derived by applying a Taylor expansion
about the mean body position and retaining linear terms.

266



Boundary Integral Equation

Green’s Theorem for field points on

the body
s 1 s.
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Green’s theorem is used once more to derive the integral equations.

As with the non-lifting case, the integral over the control surface at infinity
vanishes. The integral over the connecting surfaces that run over the wake do
not completely cancel each other, however, due to the discontinuity in
potential across the wake. Instead, we get a term involving an integral over Sy
of the potential jump multiplied by the dipole potential.

The problem can no longer be solved by placing panels only on the body. The
.wake also needs to be discretized.
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Numerical Solution

Discretize and Fourier Transform
integral equation, using body BC
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Due to the wake shed downstream, this problem has memory and thus the
solution depends on the flow at previous time instances. This means that the
solution has to be evolved in time, or needs to be solved by tanking the Fourier
transform and solving for each frequency component present.

The integral equation shown above is in the frequency domain, if the forced
motions are sinusoidal. Solution in the time domain would require the
numerical evaluation of the time derivatives.

The system of equations shown above are simply the integral equation at each
panel, with the body boundary condition substituted at the RHS.

There are, however, more unknowns than integral equations due to the extra
panels of unknown potential jump in the wake. The extra equations to close
the problem are derived from the wake condition of zero pressure jump.
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Numerical Solution

Wake Condition:

To be solved simultaneously with integral equation

atTE.... A¢wake = [(oupper = Dlower ]body
OA
in wake... la)AQk—U L =0
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For a solution in the frequency domain, the wake condition is discretized and
yields one extra equation for each panel in the wake.

If the problem is solved in the time domain, the potential jump can be
expressed exclusively in terms of the potential jump at panels during the
previous time step. Instead of unknown potential jump on the entire set of
wake panels, the only extra unknowns would thus be a strip of panels
immediately downstream of the trailing edge of the foil. This reduces the size
of the matrix to be solved, at the cost of having to evolve the solution in time.

The wake condition involves the evaluation of spatial derivatives of the
potential jump. We will examine methods for doing this later.
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Hydrodynamic Forces and
Moments
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After having solved the flow, the calculation of the hydrodynamic forces and
moments is again a matter of integrating the pressure distribution over the
surface of the body.

For steady flows it is also possible to determine the lift and drag based on a

Trefftz plane integration:
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where s is the span of the foil.
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Higher Order Potential
Distribution

¢(i) = 2 C; Bj(i)
B(3)=b(£)b(n)

<7
— 1 3 Y 3h, h,
— | x+ R <xX<——=
2h 2 2 2
1 3h? h h
- 3 - 3 o b(x)={ =] -x*+== —x <X
Bi-quadratic B-Spline: () hz[ n } 2 2
1 3, Y h 3h,
w2
13.024 Numerical Marine Hydrodynamics 18

In general, the potential distribution on each panel is not constant.

A B-spline representation, for example, represents the potential as a
summation with weight ¢; of all basis functions B; centered on each panel j. A
second order basis function is shown above. Note that the field point needs to
be converted into local panel coordinates for the evaluation of the basis
functions.

The spline coefficients c;, determine the amount of contribution from each
panel, and become the unknowns in the integral equations. Due to the overlap
of the basis functions in determining the potential at the center of several
panels, however, the unknown spline coefficients are still one per panel.

A consequence of higher order B-spline distributions is that end conditions
need to be specified at the edges of the spline sheets, so that the spline
coefficients may be uniquely determined.

Higher order singularity distributions require fewer panels to achieve
numerical flow convergence. Note that similarly, geometrical convergence
may be achieved faster if the surface is described not in terms of flat
quadrilateral panels, but by B-spline surfaces.
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Evaluation of tangential
derivatives
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higher order: ?2 = z i %, (5) b; (77)
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As already seen, there is a need for the calculation of the tangential velocity on
a panel. This may be done by finite differences, and one example is shown
above. Of course, any other finite differences scheme could be used, provided

that it does not make the overall method unstable.

If the potential distribution is of higher order then the tangential velocities can

be found analytically from direct differentiation of the basis functions.

Note that the above derivatives are given in panel local coordinates. Since the
derivatives are usually required with respect to the global coordinate system, a

transformation is needed for each panel.
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Free Surface Flows

Steady ship motion in calm water

\ ;
\\‘ Q=p-Ux u '1'

Total potential: (P = QO — Ux

e N\

Perturbation Free stream
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The evaluation of the steady wave resistance of a ship has always been of great

importance to Naval Architects. Three dimensional panel methods have the
ability to estimate this quantity without resorting to expensive towing tank
testing.

We will formulate the problem of a ship advancing steadily through calm
water, linearizing the solution about the free stream. The total flow is
therefore broken down into a free stream and a small perturbation flow
components.

274



Free Surface Boundary
Conditions

Dynamic:
zero total pressure on free surface

dg . d¢p 1
= L v, vV =0
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Kinematic:
particle on free surface remains there
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= wave elevation
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Boundary conditions are required to determine the behavior of the flow near
the free surface, and hence uniquely determine the solution.

The dynamic condition requires the pressure at the free surface to be equal to
the atmospheric pressure, which will be taken arbitrarily to be equal to zero.
The condition is thus expressed by the Bernoulli equation above.

The kinematic condition requires that a particle on the free surface remains on
the free surface forever. This means that the material derivative of its vertical
distance from the free surface should be zero.
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Linearization about Free Stream

Kelvin boundary conditions
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The free surface boundary conditions previously stated are non-linear and are
to be applied at the exact position of the free surface, which is unknown. The
numerical solution algorithm becomes much simpler and computationally
efficient if these conditions can be linearized and applied to a known surface.

The above linear conditions, also known as the Kelvin free surface boundary
conditions, were derived using a Taylor expansion about z=0 for small wave
elevations and slopes, and ignoring higher order terms.

The wave elevation can, of course, be eliminated by combining the two
equations, resulting in a condition involving only the perturbation potential
and its temporal and spatial derivatives.
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Boundary Integral Equation

0 6G
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Take Kelvin wave source as the Green function

As shown in hydrodynamics review of this course,
waterline integral replaces integral over free surface:
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Green’s theorem is used again to derive the integral equation, only this time an
integral over the free surface is needed, as well as over the body. Using a
Green function that satisfies the linear free surface conditions, however, the
free surface integral may be collapsed into a waterline integral. This means
that no panels are needed on the free surface.

One difficulty is that the first derivative of the very complicated Green
function is required, but this can be done numerically.

Note that this formulation of the integral equation relies on the use of the
linearized Kelvin boundary conditions. This is because Green functions
satisfying any other free surface linearization are not readily obtainable.
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Numerical Solution

Discretize Integral Equation and
Substitute Body BC
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Discretizing the integral equation, a system of linear equations is obtained for

the potential on each panel, as before.

Care must be taken in evaluating the waterline integral, since the value of the
potential on the free surface needs to be estimated from the potential on the

body, which is often discretized only below the z=0 plane.
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Wave Resistance

From Momentum Conservation
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(Proof follows)
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The wave resistance of a ship may be found from the above formula after the
flow has been solved.

The pressure should include the quadratic term in Bernoulli’s equation, even
though terms of comparable magnitude have been omitted in the linearization
of the free surface boundary conditions.

If the quadratic terms are omitted, the resistance of full-shaped vessels is over-
predicted. The reason for this is that close to such bluff bodies, which is where
we are performing the pressure integration, the perturbation potential is
actually of the same order as the free stream potential, so the linearization is
not accurate.

Linearizing about a double-body basis flow, as we will see later, solves this
problem and the quadratic terms are not as important.
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Wave Resistance

Conservation of Momentum
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The proof of the formula given for the wave resistance follows from the
application of the momentum conservation principle inside an appropriately
chosen control volume of fluid.

Within the enclosed volume, the rate of change of fluid momentum vanishes.

Note that because of the radiation condition, the only surface at infinity where
the integrand does not vanish is far downstream of the body, at S_.
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Control Volume at Exact Position
of Fluid Surfaces

Using boundary conditions: ‘
D oD 6D
R, = |lpn dS=-p J{—nx +———-—]dS
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From radiation condition and Bernoulli:
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C, is the intersection of S with z=0
S, is the part of S_ lying below z=0
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Taking the exact wetted surface of the hull, the exact position of the free
surface, and S, as the control surfaces (all at rest with respect to the body) and
using the body and free surface boundary conditions, the only terms that do not
vanish are the pressure integration over the body wetted surface (which is
defined as the non-linear wave resistance), and the momentum flux and
pressure integration at infinity.

The fluid velocity in the x and z directions may be found from the Kelvin free
surface boundary conditions, and the fluid pressure from Bernoulli.

The resulting expression is an exact representation of the wave resistance in
terms of far-field quantities.
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Control volume at linearized
position of fluid surfaces

Using Kelvin boundary conditions and Bernoulli:
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RHS is equal to wave resistance, Ry, from momentum
conservation in control volume bound by exact surfaces
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Repeating the same procedure for a control volume bound by the linearized
free surface (z=0 plane), the body below z=0, and the same surface at infinity,
a similar expression is derived. This time, the momentum flux across the free
surface does not vanish because the normal fluid velocity at z=0 is not zero.
The Kelvin conditions are used to express the fluid velocities on the free
surface in terms of the wave elevation.

Finally, an application of Stokes theorem transforms the surface integral over
the z=0 plane to a pair of line integrals at the body and at infinity.

The line integral along with the surface integral at infinity are recognized as
the wave resistance as previously derived using a control volume bound by the
exact free surface.

An expression is therefore derived for wave resistance in terms of near-field
quantities, starting from the principle of momentum conservation. Comparing
this expression to the one derived from pressure integration, we observe that
they are similar, but the waterline integral terms have the opposite sign!!

This paradox is due to the inconsistency of retaining second order terms in the
definition of wave resistance, but omitting them from the free surface
linearization, as previously mentioned. As the beam of the ship approaches
zero, the waterline integral term vanishes and the two definitions are in
agreement.
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Free Surface Flows

Free Motions of Body in Waves

Zero forward speed

o Unsteady incident
‘1"—“:‘_‘_- 50) ] /
Total potential: P = @+ ¢

/

Perturbation
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The determination of the motions of floating bodies in waves is another
problem of interest to ocean engineers. Here we will examine the panel
method solution of a buoy in incident monochromatic waves. Solutions to
more complex problems with forward speed and multiple frequencies can be
easily obtained by a simple extension of this problem and the previous one
examined.

Since there is no forward speed in this problem, the total potential is divided
into the incident wave and perturbation potentials.
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Solution Method

System of Equations:  Unknowns:

* Boundary Integral * Potential on each
Equation panel

* Body Boundary * Normal Velocity on
Condition each panel

. ’Equations of Motion * Body motions

13.024 Numerical Marine Hydrodynamics 30

So far the motions of the body have been prescribed, which resulted in the
body boundary conditions being completely specified. For freely floating
bodies in waves, however, the body boundary condition is a function of the
motions, which are unknown. The motions are connected to the hydrodynamic
forces through the equations of motion to close the problem.
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System of Equations

Boundary integral equation
dp dG| n
2 das + — L _p— =g
= '”Sa[ n an] [ ox (oax]cosy

Body boundary condition
dp 96 -
~Vé |
on ( ot ¢J "
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As before, the body boundary condition may be substituted into the integral
equation. This time, however, the body motions are unknown, so the integral
needs to be solved simultaneously with the equations of motion.
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Equations of Motion
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f = (,51,52, £, 54,55,56) C = matrix of restoring coefs
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The equations of motion balance the inertia forces and the hydrostatic
restoring forces with the hydrodynamic forces obtained from the flow solution.

A notation is adopted that merges the translation and rotation vectors so that
the equations of motion become a six-dimensional matrix equation, balancing
both forces and moments.
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Rankine Panel Methods

 Panels both on body and free surface
* Boundary integral equation becomes:

2 = JLB+SF [G%—f—w—aa%} ds

» Use Rankine source (G=1/47r) as elementary
singularity

* Boundary conditions determine potential and
normal velocity on free surface

» Linearize about basis flow (double body)
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Rankine panel methods distribute panels on both the body and the free surface.
They thus have a greater freedom in the free surface boundary conditions that
they can apply. This comes at the expense of introducing extra errors due to
the discretization of the free surface.

The integral equation retains the free surface term (without collapsing it into a
waterline integral as with Neumann-Kelvin methods) and thus has extra
unknown source and dipole distributions associated with the free surface
panels. These are found from the dynamic and kinematic free surface
boundary conditions.

Another advantage of Rankine panel methods is that they do not have to have
their solution linearized about the free stream, which is rather poor especially
near the ends of the vessel. Instead, they can linearize the solution about a
double-body basis flow, which produces more accurate results.
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Discretization Issues

* Distortion of the free surface
— Dispersion
— Damping
* Stability
— Spatial
— Temporal
» Radiation condition
— Truncation errors and domain size sensitivity
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A discrete free surface has a different dispersion relation than a continuous
one.. For finite panel sizes spurious wavelengths smaller than five panel
lengths are supported and need to be filtered out. Any damping of the
numerical method (i.e. Rayleigh viscosity), so that the radiation condition may
be satisfied, also affects the numerical dispersion relation.

For a convergent numerical algorithm the numerical dispersion relation should
approach the continuous dispersion relation in the limit of infinitesimally small
panel sizes. The numerical dispersion relation results in stability criteria, from
which required relations between quantities such as panel dimensions, Froude
number, time step, can be derived.

Another difference between the continuous and numerical free surfaces is the
truncation of the free surface. The condition at the edge of the computational
domain should be such that the sensitivity of the solution to the size of the
domain is minimized. One way of imposing the radiation condition so that
reflected waves from the edge of the domain are minimized is to apply
matching at some control volume around the fluid domain which contains a
flow satisfying the radiation condition. An alternate (easier) way is to use a
numerical beach where the kinematic boundary condition is modified to allow
a mass flux through the free surface (Newtonian cooling), thus damping
wavelengths less than about twice the extent of the beach.
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Linearization about basis flow
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The Neumann-Kelvin linearization assumes that the perturbation potential is
small compared to the free stream. This assumption is not very good,
especially near the bow and stern of a ship where the perturbation velocity is
equal and opposite to that of the free stream.

A better linearization for ships with forward motion is to divide the total
potential into the free stream, perturbation, and basis flow potentials. The
basis flow is usually taken to be the solution past the hull with the free surface
treated as rigid walls. Since this problem can be solved by taking a mirror
image of the hull below the waterline, this basis flow is also known as the
“double-body” flow.
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Basis Flow Solution

After discretization, solve basis flow
as shown for bodies in unbounded
fluid.

Body Boundary Condition:
¥
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on
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The double-body basis is a special case of a problem we have already seen. A
stationary non-lifting body in an unbounded free stream is simpler than all the

cases that we have examined thus far.

The solution is obtained after the body is discretized and before proceeding to
the wave flow. Note that the panels on the free surface are not needed for the

solution of the basis flow.
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Wave Flow Body Boundary
Conditions
) 5 .
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Since the forcing due to the free stream is accounted for in the basis flow, the
body boundary condition for the wave flow component of the solution includes
only the normal velocity due to the body unsteady motions.

Taking a Taylor expansion about the mean body position, and ignoring higher
order terms, a linear body boundary condition is derived. As before, the
combined translation/rotation vector is used to describe the body motions.

The m-terms provide a coupling between the basis flow and the unsteady wave
solution, and their evaluation is important, especially near the ends of the ship.
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Wave Flow Free Surface

Boundary Conditions
linearized about W and applied at z=0

Dynamic

Jdo . 09 v 1
—-U—=+4+VV¥ - Vp=-g{+U—--V¥ - V¥

dt ox v=-8¢ ox 2

Kinematic

2
ot ox 0z 0z
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The free surface boundary conditions are linearized assuming that the wave
flow is small compared to the basis flow. As with the Kelvin condition, these
linearized boundary conditions are applied at the z=0 plane.

292



Numerical Solution

For wave flow, To obtain:
simultaneously solve:

* Boundary integral Potential on body and
equation free surface

» Kinematic FSBC Normal Velocity on

» Dynamic FSBC body and free surface

* Body boundary Wave elevation

condition

Body motions
* Equations of motion
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Rankine panel methods do not have the free surface boundary conditions
satisfied automatically from the choice of Green function, and hence they need
to be solved simultaneously with the integral equation, equations of motion,
and body boundary condition.

293



Non-Linear Methods

 Higher order free surface boundary
conditions

* Body-exact formulations

 Iterative linearization about a wave solution

13.024 Numerical Marine Hydrodynamics 40

* There are cases when the linearization of the free surface conditions is not
sufficient. Computation of higher order solutions is essential for some
problems such as drift motions, slamming, etc. It is possible to use Rankine
panel methods to solve the second order free surface boundary condition, but
this would, in general, no longer involve a system of linear equations. The
solution would therefore need to be found using some sort of non-linear solver.

* Body-exact methods discretize the body at its exact position at each time
step, thus eliminating the error associated with the linearization of the free
surface boundary conditions for large body motions. This can be very
important, as seen from the inconsistencies that result when the body is only
discretized below the z=0 plane.

» Taking the linearization about the double-body basis flow one step further, it
is possible to obtain the linear solution and linearize the free surface conditions
about that.solution. Linearizing the flow iteratively about the previous
solution, the full non-linear free surface conditions should be satisfied when
convergence is reached. This approach is practical only for the steady flow
problem, but even for the unsteady problem several methods exist that
linearize the flow about flows such as the steady wave solution or the incident
wave. With these methods it is usually necessary to discretize the body and
the free surface after each iteration, thus adding to the computational load. An
exception is for raised panel methods, discussed later.
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Raised Panel Methods

Panels above z=0 plane

I SaNy Ih

* No free surface discretization necessary at each iteration

* Influence coefficients of free surface panels to body
collocation points calculated only once

* Due to distance, h, the velocity field induced in the
fluid domain from each panel is smoother
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One successful way of implementing the body-exact iterative linearization
about a basis wave flow is by using a “raised panel” method. Such methods
place singularity distributions at a distance above the z=0 plane, with the
collocation points still on the free surface.

The benefits of such methods are that the free surface panels do not have to be
re-created at each iteration, and the free surface to body influence coefficients
need only be calculated once. The method also has nice numerical properties
since the infinite velocities which are self-induced on each free surface panel
are no longer in the fluid domain. In addition, the process of linearizing the
flow about the previous solution is made more straightforward since the flow
field at the last iteration is always defined at the next estimation of the position
of the free surface.
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Strip Theory

Derivation of:
» Hydrodynamic Coefficients

» Exciting Force and Moment

Assumptions:
* Linear and harmonic motions

* Viscous effects negligible
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Potential Flow Decomposition

* Time-independent and time-dependent components
®(x, 5, z:1) =[-Ux+ ¢ (x, y, 2)|+ 8 (x, 3, 2 )™

* Incident, Diffraction, Radiation components

br =9, +0p+ 24,9,

-Ux+¢s is the steady contribution with U the forward speed of the ship, ¢ is
the complex amplitude of the unsteady potential, and w 1s the frequency of
encounter in the moving reference frame. It is understood that the real part is
to be taken in expressions involving el

¢y is the incident wave potential, ¢y, is the diffraction potential, and ¢, is the
contribution to the potential from the j® mode of motion (1=surge, 2=sway,
3=heave, 4=roll, 5=pitch, 6=yaw)

The decomposition of the potential into the above components is convenient
for the linearization of the boundary conditions, as will be seen later.
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Linearized Boundary Conditions

 Steady Perturbation Potential

: d
~ Body BC: —[~Ux+¢,]=0
(applied at hull mean position) a n
2
— Free Surface BC: U2 d ¢s +g a¢s =0
(applied at z=0) ax2 aZ

In order to linearize the boundary conditions it is assumed that the geometry is
such that the steady perturbation potential ¢g and its derivatives are small.

By assuming that the oscillatory motions are of small amplitude, the time-
dependent component of the potential, ¢, and its derivatives may also be
considered small.

Under these assumptions the problem may be linearized by disregarding
higher-order terms as well as cross-products on both ¢g and ¢y.

The above expressions for the linear boundary conditions were derived from

the exact body and free surface conditions by including only linear terms and
applying Taylor expansions about the mean hull position in the body BC and
about the undisturbed free surface (z=0) in the free surface BC.
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Linearized Boundary Conditions

Incident and Diffracted Potentials

: a¢, d
_ Body BC: ¢ 9% _,
(applied at hull mean position) an an

2
— Free Surface BC: . 0 P
(applied at z=0) [[l(l)-Ua} +g£:|¢ =0

where ¢ is ¢; or ¢p,
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Linearized Boundary Conditions

 Radiation Potentials
0
— Body BC: a¢j .
(applied at hull mean position) on =1ian;

— Free Surface BC: .
(applied at z=0) !

3 Y P
~-U—1|9° —0°=0
ij Z +gaz¢’

U ,
| b= +—p
where: ¢, = ¢;‘ for j=1234 > ’

PR
10

It can be shown that the radiation body BC is given by:
09,

n

=ia)nj+Umj

The m-terms provide a coupling between the basis flow ¢p and the time-
dependent potential.

= Vs _, - Vo,
(”llvm2’m'3)=-(n'v)_‘U— (m4,m5,m6)=—(n~V)(xx_U_)

(my,m,m;) =0
For our case, where: =— we have:
% Ux (mums»ms) = (0,?13,—7!2)
og;
Let ¢; ¢ +—¢, , where ¢J is speed independent and satisfies —- —zanj

on the body, in addmon to the Laplace equation and free-surface and mﬁmty
conditions.

It then follows that: @; =0 for j=1234

and o =¢)
9 =—0}
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Pressure Linearization

e From Bernoulli:
N a iax it
p=—p(l(0-—U$ € _pg(ga+£4)’“{5x)e

buoyancy term ignored
(included in hydrostatic restoring coefficient)

Hydrodynamic force and moment:

H; = —p”.s nj(iw—U—aa;)ngds

(integration over the mean position of hull)

Similarly to the boundary conditions, the pressure is expanded as a Taylor
series about the undisturbed position of the hull and the expression is
linearized by neglecting quadratic and higher order terms in ¢s and ¢r.

The hydrodynamic forces and moments, H, include the exciting forces as well
as the forces due to the ship motions (added mass and damping forces). They
do dot include the hydrostatic restoring forces which are included elsewhere.

302



Hydrodynamic Forces
6
H,=F;+YT{,
k=1

— Exciting Force & Moment

Fy==p[[n, (za) U= }¢,+¢D)ds

— Radiation Force & Moment
. d .
Ty =-p[], n,-(lfv-—U-g}kds =P A, —ioB,,

— Need A, B, F to get equation of motion

T, is the hydrodynamic force in the jth direction, due to a unit oscillatory
displacement in the k' direction.

The real and imaginary parts of this force is proportional to the added mass
and damping coefficients respectively. These coefficients, along with the
exiting force, will be expressed in terms of integrals of the sectional (2D)
coefficients over the length of the hull.

The equation of motion of the ship will then be fully specified:

z[_ M1k+A +la)B]k+C]k];k
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Radiation Forces

e Variant of Stokes’ Theorem
‘UnjU%%ds=U£mj¢ds‘—Ué[nj¢ di

* From which:
Ty =—pio[ ng,ds+Up|[ mg.ds-Up jCA n,@.dl
;.W—/
Ty
* Use the decomposition of the radiation potential to
express T, in terms of speed-independent terms

In deriving the variant of Stokes’ theorem, a small angle between the waterline
and the x-axis is assumed. S is the hull surface forward of the cross section
Ca.

As we did for the radiation potential, we can divide the hydrodynamic force
into speed-independent and speed-dependent components. The speed-
independent components are defined as follows:

0 A _ 0
]k = pza)j n;p,ds Ly =—pi chA n;@.ds
Then, using the properties of the radiation potential, we have:
for j,k=1,2,3,4: for j=1,2,3,4:
U u U’
U Ty=Tp t— T° 4 ——14
Tjk =T]‘Z :‘1 s s pt i0 s~ o° 73
i@ u v, U
A
Ty =T ‘57}02 +Ta;‘f6 e
for k=1,2,3,4: and finally'
U U,
_ 0 0 A
T, =T _.LLT;Z v —t T =T + Taa wtss e t53
02 U, U,
T6k _T60k U Tz(;: U 6Ak Teo = T(’% TO Cl)t:6 w* t62
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Strip Theory Approximations

* Length >> Beam, Draft

ds =dédl =Ty, =—pio| [n¢dld¢ = [1,d¢
LC, L

d d d
_<<___’_
ox Jdy oz
n,=N, (j=234)
<<n,,n, ={n. =—xN. N: 2D normal
" 2/ ’ ? n: 3D normal

ne =xN,

d
vl =
@ >> (ax]

The above approximations are all consistent with the trip theory assumption of
a long and slender ship.

The last condition, which states that the frequency of encounter is high,
requires that the maximum wave length is of the same order as the ship’s
beam. This enables us to simplify the radiation potential free surface
condition so that ¢° is indeed speed-independent as assumed.

Under these assumptions, the 3D Laplace equation and the boundary
conditions reduce to the 2D Laplace equation with the corresponding 2D
boundary conditions.
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Radiation Forces 1n terms of 2D
hydrodynamic coefficients

T, =I’22d‘f Tg= J't”df T, = J‘t«df
T =Ta=[¢r,df  T3=To=-[étd¢ T3 =Tg = [r,dé
Tg = [E1,dE Ty = [E'1,dE T4 =To = [£n,dé

All the rest T, =0, for ships with lateral symmetry

where: ¢ =—pio [N g)dl=w'a; ~iah; for j=234
CX

Ly = _piij2¢:dl =0’ ay —iwb,
CX

From the assumptions of strip theory, the two-dimensional radiation potential
at each section, y,, is equal to the three dimensional potential ¢,° for sway,

heave and roll:
gy =y, for k=234

In addition, from the hull condition, we have for pitch and yaw:

¢50=_x‘//3 and ¢2=XW2

and @ <<d! for k=2..6

The above relations were used in conjunction with the expressions for the
sectional radiation forces and the strip theory approximations to get the zero-
speed radiation forces in terms of the 2D forces.

So from all the above, and from the relation between the speed-independent
and speed-dependent components of the radiation force, we have all we need
in order to express the added mass and damping coefficients in terms of the
sectional two-dimensional added mass and damping.
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Incident Wave Exciting Forces

Fl= _p”nj(ia)—b’%},ds
§ =

¢1 - lga e—ik(xcosﬁ—ysinﬂ)ekz
@,

F] =—pia, [[n,¢,ds
S

(Froude-KTriloff force and moment)

o: wave amplitude

k: wave number

B: heading angle

®y: wave frequency, related to frequency of encounter by @, = w+ kU cos 8
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Diffraction Forces

FP =_p”nj(ia)—U-E%-)¢Dds
» Using: s

— Stokes’ theorem
— Hull BC
— Green’s 27 identity

we get'

\a¢l pU ¢ 404,
rp=pff{ ot [oas e B0 o e

The same form of Stokes’ theorem that was used for the radiation forces
earlier is applied to the diffraction forces.

The hull condition for the radiation potentials is then used to get products of
potentials and normal velocities.

Green’s identity, which involves such products, is then used to eliminate the
radiation normal velocities (they get substituted by the diffraction normal
velocities)

The hull boundary condition is then used to replace the diffraction normal
velocities by the negative of the incident wave normal velocities which are
known.

Use may then be made of the relations between the speed-independent and
speed-dependent components of the radiation potentials to get an expression
involving only the speed-independent components.

Finally, the incident wave potential, which is a known quantity, may be
substituted.
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Excitation Forces in terms of 2D
sectional forces

F,<<F, k=2..6

F,=paf(f, +hj)d§+pa%h,‘ j=234
U U .,
Fy= 'pal[g(fs + h‘s)*'l_whj]dg _pa,’Ta_)xAhs
F= paf &0, +h)+ o i+ pa bt
where: £,(x)= e [N £™™%edl (2D Froude~ Kriloff )
c,

h(x)= w,e ™’ J(iN’3 — N, sin B)xe®™Pe"pldl (2D diffraction)
c,

The excitation forces in terms of the sectional Froude-Kriloff and diffraction
forces are derived from the previously derived expressions by making use of
. the strip theory approximations.
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