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2.25 Advanced Fluid Mechanics 

Problem 10.11 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

The steady sink flow in the sketch is set up by injecting water tangentially through a narrow channel near 
the periphery and letting it drain through a hole at the center. The vessel has a radius R. At the point of 
injection, the water has a velocity V and depth h0; the width of the injection channel, b, is small compared 
with R. In what follows, we consider the region of the flow not too close to the drain, and assume that 
everywhere in that region (i) the flow is essentially incompressible and inviscid, (ii) the radial velocity 
component |vr| i small compared with the circumferential velocity component vtheta, and (iii) the water 
depth does not differ much from its value h0 at the periphery. 

•	 (a) Starting with Kelvin’s theorem on circulation, show that 

vθ = 
V R

.	 (10.11a) 
r 

This equation states that the angular momentum of a fluid particle remains constant in this flow. Is 
the angular momentum of a particle always constant? Why is it constant in this case. 

•	 (b) Obtain result (a) from Helmoltz’s vortex laws. 

•	 (c) Obtain the result of (a) directly from Euler’s equation of motion. 

•	 (d) Show that the assumption that |vr| « vθ is satisfied if b « R. 

•	 (e) Derive an expression for the actual distribution of water depth, given the velocity distribution of 
part (a), and show that the water depth is essentially constant, as we assume, provided that

  2 
V 2r » .	 (10.11b)

R 2gh0 
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Solution:
 

• (a) 

Using Kelvin’s Theorem with ρ = Const and μ = 0, and using a circular material line as shown in the 
figure, 

ΓC(t2) = vθ(rm(t2))rm(t2)2π = vθ(rm(t1))rm(t1)2π = ΓC(t1), (10.11c) 

DΓsince . Now, let’s choose rm(t1) =  R and rm(t2) =  r. At these positions the velocities are U andDt 
vθ(r) respectively . Then, 

UR  = vθ(r)r, (10.11d) 

then, 

vθ = 
UR

. (10.11e) 
r 

• (b) 

Since the fluid starts with null vorticity ω = 0, and Dω = 0 (Helmholtz’s Vorticity Equation), then it Dt 
has to remain null as the particle travels through the container, then, 

∂vθ vθ
ω = + = 0, (10.11f) 

∂r r 

then, after integrating, 

vθ = 
C 

, (10.11g) 
r 
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but vθ(r = R) =  U , then C = UR, finally 

vθ(r) =  
UR

. (10.11h) 
r 

• (c) Since |vr| «|vθ|, we know, from Euler in cylindrical cordinates, that 

2∂p vθ∼ ρ (10.11i)
∂r r
 

and, since (from Helmholtz) ω = 0, then from Bernoulli,
 

1 
p + ρv2 = Const, (10.11j)

2 θ
 

then, differentiating this equation, we can get the value of the pressure derivative,
 

∂p ∂vθ+ ρvθ = 0, (10.11k)
∂r ∂r 

then equating the value of the derivatives, 

v2 ∂vθθρ = −ρvθ , (10.11l) 
r ∂r 

then, we obtain, 

∂vθ + 
vθ = 0, (10.11m)

∂r r 

as before. Hence, 

vθ(r) =  
UR

. (10.11n) 
r 

• (d) By continuity, 

Ubh0 = −vr2πrh0, (10.11o) 

or 

Ub  UR b |vr| = = , (10.11p)
2πr r 2πR

bwhere the second term « 1 and then, 2πR 

|vr| « 1. (10.11q) 

• (e) Assuming a 2D flow, 

∂p 
= −ρg, (10.11r)

∂z
 

where p(z = h(r)) = patm, then
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p = patm + ρg(h(r) − z). (10.11s) 

Also, from Euler-n, 

2∂p v U2R2 dh dh U2R2 
θ= ρ = ρ = ρg , ⇒ = , (10.11t)

∂r r r3 dr dr gr3
 

then after integrating, and dividing by h0,
 

(h0 − h(r)) U2R2 1 1
 
= − , (10.11u)

h0 2gh0 r2 R2
 

but since r « R,
 

(h0 − h(r)) U2R2 1
 
= , (10.11v) 

h0 2gh0 r2
 

then h ∼ h0 if
 

U2 R2 2 
U2
r « 1, ⇒ » . (10.11w) 

2gh0 r2 R 2gh0 

Note: We could also obtain the exact (Potential Flow) solution without assuming |vr| «|vθ| by combining a 
sink and an irrotational vortex, 

Ub  UR Ub
Φ =  URθ  − ln r, ⇒ V = ∇Φ =  îθ − îr, (10.11x)

2π r 2πr 

∂ 1 ∂where ∇ = îr + îθ , and then the Bernoulli constant is ∂r r ∂θ 

U2R2 21 b 
p + 1 +  . (10.11y) 

2 r2 2πR 

D 
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