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2.25 Advanced Fluid Mechanics 

Problem 10.3 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Consider the three different, steady, two dimensional incompressible flow fields illustrated in Figures (a), (b), 
and (c) above. The flows represent 

•	 (a) a parallel flow in a channel, with a linear velocity profile, 

•	 (b) a flow in an annulus, with the liquid rotating like a solid body in unison with its bounding walls at 
an angular speed Ω, and 

•	 (c) an inviscid flow in a bend of width b small compared with the mean radius of curvature R. the flow 
being uniform at a speed V prior to entering the bend. 

A primitive ‘vorticity meter’ made of two perpendicular vanes mounted on a shaft, as sketched, is inserted 
into each of these flows, oriented so that its shaft with the arrow on top is pointing upwards from the paper. 
The ‘vorticity meter’ is neutrally buoyant and its axis moves with the bulk motion of the fluid in which it is 
immersed. 

You are to estimate, for each of the cases (a) to (c), 

•	 (i) the clockwise angular rate of rotation dθ of the ‘vorticity meter’ and dt 

•	 (ii) the pressure difference p2 − p1 

In case (c) do this for a point in the middle of the bend. 
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Solution:
 

• (a) First, let’s calculate the vorticity, in general it is 

ω = x̂
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which in the 2D case is, 
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which can be interpreted as twice the averaged rotation of the local axis, 

ω = 
dθ1 

dt 
+ 

dθ2 

dt 
= 2Ωlocal, (10.3c) 

or using streamlines 

ωz =
 

∂V 
∂n 

+ 
V 
R

 
. (10.3d) 

In this case, 
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, (10.3e) 

then 

dθ 
dt = − U2−U1 

2b . (10.3f) 

Now, the Euler’s equations of motion in streamline coordinates are: 
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then by Euler in the r direction, (in this problem r = y direction), 

∂ 
(p) = 0, (10.3k)

∂y

then p is a constant along the cross section. Notice that ‘simply’ using Bernoullis’ equation to obtain 
the pressure difference is not possible, because the points do not form part of the same streamline, and 
therefore they have a different Bernoulli constant, B. 

• (b) 

ˆSince the fluid behaves as in solid body rotation, V = Ωriθ, and, 

dθ 
dt = Ω. (10.3l) 

Now, using streamlines 

∂V V ∂V V 
ωz = + = + = Ω + Ω = 2Ω. (10.3m)

∂n R ∂r r 

then, using Euler-n in cylindrical coordinates, 

V 2 2∂p 
= ρ = ρΩ2 r = ρΩ2 r, (10.3n)

∂r r r 

then, integrating, 

2 Ω2∂p 
= ρ (R2

2 − R2), (10.3o) 
1 ∂r 2 1

then 

= ρΩ2 
p2 − p1 (R2

2 − R2). (10.3p)2 1

Notice that even when the solution ‘looks like’ Bernoullis’ equation, the points do not form part of the 
same streamline, and therefore the use of Bernoulli is unjustified. 
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• (c) 

First, let’s assume circular streamlines. Then, since ωz = 0 at the entrance, from Helmholtz or Kelvin, 
ω = 0 at the channel bend, (neglecting the effects of the wall/viscosity). Then, 

dθ = 0. (10.3q)dt 

Now, for circular streamlines, 

ω = 
∂V 

+ 
V 

= 0, (10.3r)
∂r r 

then integrating, 

V = 
A

, (10.3s) 
r 

where A is an integration constant. A can be determined matching the flows across the bend and at 
the entrance, then, 

R2 A R2
Ub  = dr = A ln , (10.3t) 

R1 
r R1 

Ubthen, after simplifying, A = R2 
, then, 

ln R1 

Ub  1 
V = . (10.3u)

ln R2 r 
R1 

Now, that we know more about the velocity difference in the bend, we can calculate the pressure 
distribution too. Using Euler-n (cylindrical coordinates). 
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then, integrating, 
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then, 

p2 − p1 = ρA2 

R3 b. (10.3x) 

In the limit when R » b, A ≈ UR  and then, 
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ρU2 

p2 − p1 = b. (10.3y) R 

Alternatively, since the flow is inviscid and started as a uniform flow, each streamline has the same 
Bernoulli constant, B, and the use of Bernoulli’s equation is possible in this case. 

Note: Bernoulli is probably the most well known name in Fluid Mechanics (even magazines have his name), 
and his equation is among the most used equations in Fluid Mechanics, but is also one of the most abused. 
Careful thought must be performed each time the equation is used; it simplifies many problems, and gives 
information that otherwise might be quite hard to obtain, but quite often too, it’s use is unjustified. 

Bernoulli MagazineTM  is an specialized magazine in Car’s Fluid Mechanics. 

D 

Problem Solution by ATP/MC, Fall 2008 
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