MIT Department of Mechanical Engineering
2.25 Advanced Fluid Mechanics

Kundu & Cohen 2.6, 2.7, and 2.20
These problems are from chapter 2 in “Fluid Mechanics” by P. K. Kundu, I. M. Cohen, and D.R. Dowling

e (2.6) Show that the condition for the vectors a, b, and ¢ to be coplanar is:
Eijkaibjcy

e (2.7) Prove the following relationships:
0ij0i5 = 3 €pgi€pgj = 20i;

e (2.20) Use Stokes theorem to prove that vV x (V¢) = 0 for any single-valued twice-differentiable scalar
(¢) regardless of the coordinate system.
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Vector Calculus Kundu & Cohen 2.6, 2.7, and 2.20

Solution:
2.6
Condition for three vectors a, b, and ¢ to be coplanar is
a-(bxc)=0 (1)
Also we know that
bxc=(girbjcke;) (2)
From (1) and (2):
ai¢; - (€ijubjene;) =0 (3)
which leads to:
Eijkaibjcy (4)
2.7
From the definition for Kronecker delta:
5ij:0ifi7éjand5ij:1ifi=j (5)
Thus
0ij0ij = 0;i0i; =1+ 1+1=3 (6)

For proving the other statement (ep4:€pq; = 20;;) we should refer to the definition of the alternating tensors:
if there is any repeating index, i.e. ¢ = j, or j =k, or ¢ = k then &5, = 0. This means that in €pg4i€pq; the
only non-zero terms are the ones in which p,q,7, and 7 have four different index values. Since we only have
three values for any possible index (1,2, and 3) the mentioned condition for having non-zero terms is only
true when ¢ = j (one can easily pick two different values of 7 and j (e.g. i =1 and ¢ = 3)and see that all the
terms turn to be zero in €p4i€pq;. Thus we will have the following:

Epgi€pqj =0 if i F# ] (7)

if 1=J: €pgi€pgj =0+ Epgi€pgi =0+ E?)qi (8)

Knowing that for any value of i there are only two remaining non-zero terms in the right hand side of (8)
which are either —1 or 1, we will have:

if i=7: epgicpg =0+ (—1)> 4 (1)> =2 (9)

From (7) and (9):
Epgi€paj = 20ij (10)
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Vector Calculus Kundu & Cohen 2.6, 2.7, and 2.20

2.20
From Stokes’ theorem:
/(ng)~@:]{@-@ (11)
A c
Replacing u by V¢ will lead to:
/ (Y x (V9)) - dA = }{ V.ds (12)
A c

Now considering the right hand side of (12), for the line integral of a gradient vector we have the following:

b
/@.@:M—wa) (13)

Using (13) for the closed integral over the curve C, we will have:

]{ Vo.ds = ¢ (a) — ¢ (a) (14)
C

In which a can be any arbitrary point on the curve C.
Using (14) and also having (12) for any arbitrary area, A, one can conclude that vV x (V¢) =0

2.25 Advanced Fluid Mechanics 3 Copyright (© 2012, MIT



Vector Calculus Kundu & Cohen 2.6, 2.7, and 2.20

Problem Solution by Bavand, Fall 2012
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MIT Department of Mechanical Engineering
2.25 Advanced Fluid Mechanics

Panton 3.12

This problem is from “Incompressible Flow” by Ronald L. Panton

Write the following formulas in Gibbs’s notation using the symbol V. Convert the expressions to Cartesian
notation and prove that the equations are correct.

div(gv) = ¢ divv+v. grad ¢

diviuxv)=v - curlu —u - curlv

curl(u X v) =v « gradu —u - gradv+udivv —vdivu

2.25 Advanced Fluid Mechanics Copyright (©) 2013, MIT



Vector Calculus Panton 3.12

Solution:

div(¢v) = ¢ dive + v - gradeo (1)

Using Gibbs Notation we can rewrite equation 1 as:
V-(pv)=¢V-v+uv Vo (2)

In order to write the equation in index notation, starting from left hand side we have:

0 0 ¢v; 0 ¢v;
- (00) = (5 @) (6 vig) = Lles ) = 5ol 3)
We know that d;; is only non zero when ¢ = j, therefore:
8¢Uj - 8¢Ul
ox; %ij = ox; )

where ¢ is the summation variable. Then for the first term on the right hand side, following the same method
as above:

B o A B 8’03‘ . 6’()]‘ o avi
(ZSZ'Q—Qb(%Qi)'UJﬁj_(b%(Q Qj)—¢afg%51ﬂ_¢a7¢ ©®
And for the second term:
e 0 0 0 08
v z¢ =v; Ql 833]QJ = V; 8mJ§l QJ = V; a_j(jj 61] =v; 8.131' (6)

And thus equation 1 in index notation has a form of:

8(25111 o 811@ . 3(25
Bxl- o ¢8x1 T+ axl

(7)

Now in order to prove equation 1, we start from the left hand side of equation 7 and use the chain rule to
open the derivative:

8¢1}i 8vi . 8¢

Multiplying the last term by é;; = 1:
8’Ui 8¢ o 8vi ) 8¢ - 8vi ) 8(;5
¢3x,~ + v; %511 = (baxi + Uz%(gi Qi) = (baxi + vie; %Qi 9)

By multiplying the last term with §;; = 1 we are able to get to the dot product of two vector quantities.

Also we know that in index notation: 9
v;

= . ].
81‘,' z = ( 0)
o¢
e 11
oz, % = Y9 (11)
Therefore substituting back from equations 10 and 11 into 9 we get:
- 8¢’Uz - 8’1& a¢ -
V- (¢v) = i ¢87,i e 5 e = ¢V -v+uv-Vé (12)

and equation 1 is proved.
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Vector Calculus Panton 3.12

div(u X v) =v - curlu — u - curly (13)
Equation 13 can be written in Gibbs notation as:

V-(uxv)=v-Vxu—u-Vxuv (14)
In index notation, the left hand side can be written as:

0 ou;v
Vo (uxv) = (5-e)  ujonejn ¢ = (~52

axf

0;; is only non zero when i = [. Thus:

Oujvy
8{171‘

) €kl €€ = €kt il (15)

Oujvy
al‘i

ou;vk
€jk1dy = #Ejki (16)

Therefore:

Oujvy

V- (uxv)= D,

Ejki (17)

As for the right hand side:

uzaix] Ejki (19)

Therefore, equation 13 in index notation is written as:

ou; vy, ouy, vy,

J

Ejki = Uy Ejki — Ui Ejki 20
ox; "' l@:cj Jh Z@:cj T (20)

In order to prove equation 13, we start from the left hand side and use the chain rule to open the derivatives:

Ou; vy ou; vy
3;31‘ Ejki = aTcZ €kiVk + o, Ejkily (21)

V-(uxv)=
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Vector Calculus Panton 3.12

Then multiplying the first term by 0y, and the second term by d;; ( dxr = J;; = 1 does not add anything to
the equation, however it helps in creating the dot product needed to prove the equations) :

ou; ovy, ou; ovy,
J J
= EjkiVk + 7 Ejkilj = = EjkiVkOkk + = Ejkil;0;; 22
oz, Ik O, RN T g, Ik O, IR0 (22)
We know that €;,; = —¢&;;. Thus:
ou; 8vk
J _
D €jkiVkOkE + . EjkiUjlj; =
T K2
ou; ovy,
J e a0 d Wb =
O EijkVkOkE — 67 EikjUj055 =
K2 1
Ou; vy,
37301- EjkiVk € " Ef — 57% EikjUj €5 - €5 =
ou; ov
J k
e €jki € " VkEg — Oz, Eikj€j - UjE; (23)
7 K3

From the definition of curl in index notation we know:

Vxu= % €ijkCr (24)
and oo,
Vxo= D, I (25)
Therefore,
% E€jki € VkEl — % Eikjej - UjC; = (26)
(Vxu)-v—(Vxv) u (27)

Since dot product is commutative, we can rewrite equation 27 as:
(Yxu)  v—(VYxv) - u=v-(Vxu)—u-(Vxuv) (28)
And thus equation 13 is proved.

c.
curlluxv)=v-gradu—u-gradv+u-divv—v-divu (29)

Equation 29 in Gibbs notation is presented as:

Vxuxv)=v-Vu-u-Vv+uV-v-vV-u

(30)
For the index notation, starting from the left hand side of equation 29:

Z><(u><y)=i
T

e X (uje; X vgey) =

Oujvy
e, X (e Xe =
8Ii =1 (7‘] 7k)

Oujvy
81‘,‘
Ou vy
&vi

ou,; vy,
#& EjkIEilm Em (31)

€; X (€jm ) =

Ejkl €, X g =
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Vector Calculus

Panton 3.12

For the first term on the right hand side we have:

Using the identity ¢- (a b) = (a - b)c:

Same with the rest of the terms:

2.25 Advanced Fluid Mechanics

v; 0 oz, & (ejer) (32)

— Ek (34)
k

o 2 g, (36)
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Vector Calculus Panton 3.12

Thus equation 29 in index notation is given as :

Oujvy Ou; ov; 0v; Ou;
o o ig €~ Vi g 37
8%1' &rk - T &t u (E'Q v ‘6 ( )

In order to prove this equation, starting from the left hand side (equation 31), we use the identity shown in
equation 3.3.5 in Panton to change the alternating tensor into the Kronecker delta. Also, using the fact that
Eilm = €lmi and € = €15, we have:

Eiki€ilm Epm = ViO

Oujvy
W EjklEilm €y =
Oujvy
Oz EljkEImi €y =
ou;v
a; b (6m]61k7 6mk:5ij) € =
ovg, ou;
(’U,j + v J )(5m]61k 6mk§lj) Em =
ox; ox;

ov ov ou ou;
(455, SOt — uja—;(smkaij +vka—;6mj5m — Ok L mkdi) € (38)

The first term in equation 38 is only non zero when m = j and ¢ = k.

0
Uj avk 5mj§zk E€m =
a’l]i
8’[)1'
Uy €55
7 8:31»
uV-v (39)
The second term is only non zero when m = k and 7 = j:
8vk
—Uj 5 O, 7nk5ij Em =
ou
3:102-
é%k
“uig - alee) =
0
—uia%': (e ¢) =
avk
—UiE; - 8x»§’“ €;
~u-Vu (40)

—Ujo— €0; =

Here we used the identity ¢- (a b) = (a - b) ¢ to change e;, (e; - ¢;) into the dot product of a vector and a
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Vector Calculus Panton 3.12

tensor. The third term is only non zero when m = j and ¢+ = k:

Vi € € €

8951-* -
v-Vu

And the fourth term is only non zero when m = k and i = j:

ou;
J _
—Vk 37552-6mk6ij Em =

Putting equations 39, 40, 41 and 42 back into equation 38 and equating it with equation 31, we get:

Vxuxv)=v-Vu—u-Vv+uV-v—vV-u

Therefore, equation 29 is proved.

Problem Solution by Shabnam Raayai, Fall 2013

2.25 Advanced Fluid Mechanics Copyright (© 2013, MIT



MIT OpenCourseWare
http://ocw.mit.edu

2.25 Advanced Fluid Mechanics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



