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2.25 Advanced Fluid Mechanics 

Particle Kinematics 
Lagrangian and Eulerian Frames - Material Derivatives 

The stream function — which will be discussed in more detail later in the course — in cylindrical co-ordinates 
(r, θ) for flow past a circular cylinder of radius a with clockwise circulation Γ is given by 

2   a Γ r 
ψ(r, θ) = U r − sin θ + ln (1) 

r 2π a

a) Write the stream function ψ(x, y) in Cartesian co-ordinates, and find the components of the velocity ux 

and uy in the x and y directions. 

Hint: The stream function is defined in terms of the velocity components as 

∂ψ(x, y) 
ux = (2)

∂y 
∂ψ(x, y) 

uy = − (3)
∂x 

b) Derive the ordinary differential equations that govern the particle path lines. 

c) Find the equation for the particle trajectory passing through the point r = 2a, θ = 0 (or equivalently,
 
x = 2a, y = 0).
 

d) Show that a particle on the surface of the cylinder always stays on the cylinder. Find the tangential
 
velocity component of such a particle, and determine the stagnation points. 

Hint: In cylindrical co-ordinates, 

1 ∂ψ(r, θ) 
ur = (4) 

r ∂θ 
∂ψ(r, θ) 

uθ = − (5)
∂r 

e) Sketch the stream lines for the case Γ > 4πaU . What happens as r → ∞? 

c2.25 Advanced Fluid Mechanics 1 Copyright © 2011, MIT 



Continuum and Kinematics Particle Kinematics

Solution:

(
a2
)

Γ ( r
a) We have ψ(r, θ) = U r − sin θ + ln

r 2π a

)
To con√vert to Cartesian coordinates, we make the following transformations:

y x
r → x2 + y2; sin θ → √ ; cos θ

x2 + y2
→ √

x2 + y2

∴ ψ(x, y) = U

(√ a2
x2 + y2 − √ y Γ x2 + y2

+ ln( ) x2 + y2

)
x2 + y2 2π

(√
a

)
a2 Γ

= U 1

√
− y + ln
x2 + y2 4π

(
x2 + y2

(6)
a2

)

To find ux(x, y) and uy(x, y), we use the equations 2 and 3. Upon carrying out the differentiation we have

a
ux = U

(
2(y2 x2) Γ y

1 + + (7)
(x2

−
+ y2)2 2π x2 + y2

2a2xy Γ

)
x

uy = − U + (8)
(x2 + y2)2 2π x2 + y2

b) A pathline is the locus of points through which a particle of a fixed identity has traveled

Let X(t;x0, y0) and Y (t;x0, y0) be the Lagrangian coordinate position of a fluid particle. x0 and y0 are
parameters that refer to the initial position of the particle. We now have

dX
= ux(X,Y ) = ux(X(t;x0, y0), Y (t;x0, y0))

dt
dY

= uy(X,Y ) = ux(X(t;x0, y0), Y (t;x0, y0))
dt

We also have the initial conditions X(t = 0;x0, y0) = x0 and Y (t = 0;x0, y0) = y0. These first order linear
differential equations can be solved to find the pathlines.

Another way to arrive at the above equations is to use the material derivative. We know that

DF ∂F
= + v

Dt ∂t
· ∇F (9)

For consistency, the velocity expressed in the Lagrangian frame should equal the velocity expressed in the
Eulerian frame at time t, and hence v = uxêx + uyêy

Setting F = x, we get
Dx x

=

(
∂x
)

∂x ∂
+ux +uy

Dt ︸ ∂t︷︷ x,y
0

︸ ︸︷︷︸∂x ∂y

1
︸︷︷︸

0

Dx Dy
Therefore = ux and similarly, = uy

Dt Dt
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c) We know that the value of the stream function must be constant along a streamline. Therefore, we first
find the value of the stream function at the point (r = 2a, θ = 0) and we get

Γ
ψ(r, θ)|(2a,0) = ln 2 (10)

2π

Thus, any particle (r = 2a, θ = 0) must have the same value of the stream function all along its trajectory.
Hence, the equation of the trajectory of a particle located at (r = 2a, θ = 0) is(

a2 Γ
ψ(r, θ) = r −

r

)
r

sin θ + ln = 0
2π 2a

d) We go back to the stream function in cylindrical polar coordinates (equation 1), and using equations 4
and 5, we calculate ur and uθ to be

ur = U

(
a2

1−
)

cos θ (11)
r2

uθ = −U
(

a2
1 +

r2

)
Γ

sin θ − (12)
2πr

Clearly, at r = a, ur = 0.

A formal way to show that a particle on the cylinder always stays on the cylinder is to check that r(t) = a
dr

solves the differential equation = ur, and satisfies the initial condition r(t = 0) = a. An informal way is
dt

just to check that ur = 0 whenever r = a, and that ur = 0 implies that the value of r will not change, i.e. it
always stays equal to a.

e) To sketch the velocity profiles, let us look at uθ on the surface of the cylinder (we know that ur(r = a) = 0)

Γ
uθ = −2U sin θ − (13)

2πa
u 2⇒ ˙ θ U Γ

θ = = sin θ (14)
a

−
a

−
2πa2

˙Let us plot θ as a function of θ for the cases Γ < 4πaU and Γ > 4πaU , which is shown in Fig. 1.

It can be seen from equations 2 and 3 that as r →∞ (x, y →∞), the velocity field is purely horizontal with
magnitude U .

Case 1: Γ < 4πaU

˙The points A and B correspond to the points at which θ = 0 on the surface of the cylinder. At these points,
˙the sign of θ changes, and hence the angular velocity reverses direction. To find these points, we simply find

the points where uθ = 0 at r = a, (i. e)

Γ
2U sin θ =

2πa
Γ⇒ sin θ = −

2πa

Since we know that ur = 0 at r = a, and also uθ = 0 at points A and B, these points are stagnation points.
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Figure 1: The variation of the angular velocity θ̇ at the surface of the cylinder. When Γ < 4πaU , A and B 
are stagnation points. When Γ > 4πaU , there are no stagnation points on the surface of the cylinder. 

Case 2: Γ > 4πaU 

To find the stagnation points, we first set ur = 0 

2a
ur = U 1 − cos θ = 0 

r2 

⇒ cos θ = 0 or r = a 

But at r = a, uθ  = 0 (this can be verified by setting r = a in equation 5), so there is no stagnation point on 
the surface of the cylinder. This means that the stagnation point lies away from the surface of the cylinder. 
We also know that this stagnation point must lie along the vertical line passing through the center of the 
cylinder because cos θ = 0 ⇒ θ = 90◦ or θ = 270◦ (θ = 0 is the horizontal line through the center of the 
cylinder). 

To find this stagnation point, we use cos θ = 0 (sin θ = ±1)and set uθ = 0 solve for r. 

2a Γ 
uθ = 0 ⇒ U 1 + = (15) 

r2 2πr 

We have used sin θ = +1 in the above equation because sin θ = −1 has no real root. Solving this quadratic 
equation we find that 

1 
r = Γ + Γ2 − (4πaU)2 (16)

4πU 

The other root lies inside the cylinder and is therefore discarded. A sketch of the flow profiles for the cases 
Γ < 4πaU , Γ = 4πaU , Γ > 4πaU , is given on Page 181 of the course textbook, and has been reproduced 
here for convenience. 

D 

Problem Solution by AJ, KT, Fall 2011 
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Figure 2: Different regimes of flow past a circular cylinder with circulation. Adapted from Fluid Mechanics 
4th ed., P. K. Kundu and I. M. Cohen, Academic Press, 2008. 
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