
2.25 – Fluid Mechanics 
Overview of Lagrangian and Eulerian Descriptions 

Lagrangian Description 

In the Lagrangian perspective, we follow fluid particles (material points) as they move through 
the flow.  Mathematically, we specify the vector field 

  0 ,X X t  (1) 

where X is the position vector of a fluid particle at some time t and 0X is the position vector of 

the particle at some reference time, say 0.t t   That is 

  0 0 0,X X X t t   (2) 

We defined the Lagrangian velocity as the time derivative of the position vector following a fluid 
particle: 

 
single
particle

dX
V

dt
  (3) 

Eulerian Description 

On the other hand, the Eulerian perspective fixates on a particular point in space, and records the 
properties of the fluid elements passing through that point.  Mathematically, specify 

  ,v x t  (4) 

where v  is the velocity vector at the laboratory coordinate  at time .x t  

One way to connect the Lagrangian and Eulerian descriptions is 

     0 0
Eulerian Lagrangian

, , , .dX
v x X X t t X t

dt
   (5) 

Both sides of equation (5) describe the velocity of the fluid particle that was at 0 0 at ,X t but is at 
the position x  at time t.  
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Material Derivative 

The material derivative gives us a way to relate the Lagrangian description to the Eulerian one.  
It is defined for a quantity F (which could be a scalar or a vector) as 

  .DF F
v F

Dt t


  


 

In Cartesian coordinates, this is written as 

  

DF

Dt

F

t x ,y ,z
fixed

 v
x

F

x t ,y ,z
fixed

 v
y

F

y t ,x ,z
fixed

 v
z

F

z t ,x ,y
fixed

 

The material derivative can be used to obtain the ordinary differential equation describing the 
pathline of a particle.  At any instant in time, the particle inhabits some laboratory point, 
described by .x   At some time t, the particle position X (in Lagrangian coordinates) is therefore 
equal to .x   Since the material derivative tells the Lagrangian time derivative in Eulerian 
coordinates, we can obtain the ODE we seek by setting 

 
single
particle

.dX Dx

dt Dt
  (6) 

The right-hand side can be thought of as the rate of change of the laboratory coordinate of the 
fluid particle of interest with time.  Let us focus only on the x-coordinate of this particle.  As 
shown in class, for this case the material derivative becomes 

 
single , , , , , ,, ,
particle fixed fixed fixedfixed

0 (1) 0 0 .x y z x x
x y z t y z t x yt x z

dX Dx x x x x
v v v v v

dt Dt t x y z

   
         

   
 (7) 

Similarly, the time evolution of the y-coordinate of the particle is described by 

 
single , , , , , ,, ,
particle fixed fixed fixedfixed

0 0 (1) 0 .x y z y y
x y z t y z t x yt x z

dY Dy y y y y
v v v v v

dt Dt t x y z

   
         

   
 (8) 
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