MIT Department of Mechanical Engineering 2.25 Advanced Fluid Mechanics

Problem 2.5
This problem is from "Advanced Fluid Mechanics Problems" by A.H. Shapiro and A.A. Sonin

A container is being filled with liquid of density ρ . A small, sharp-edged hole of radius R penetrates the container's bottom. The surface tension between the liquid and the ambient air is σ , and the contact angle for the air/liquid/container combination is α (measured from the wall through the liquid to the interface).

- (a) Find the critical liquid depth h_c at which liquid first begins to flow through the hole in the bottom. Assume that $R \ll h$. (Hint Is the expression different depending on whether α is greater or smaller than $\pi/2$?)
- (b) Evaluate h_c for the case when the liquid is water at 20°C, $R = 0.1 \,\mathrm{mm}$, $\sigma = 0.07 \,\mathrm{N/m}$, and $\alpha = 120^\circ$.

MIT OpenCourseWare http://ocw.mit.edu

2.25 Advanced Fluid Mechanics Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.