MIT Department of Mechanical Engineering
2.25 Advanced Fluid Mechanics

Kundu & Cohen 6.8
This problem is from “Fluid Mechanics” by P. K. Kundu and I. M. Cohen

A solid hemisphere of radius a is lying on a flat plate. A uniform stream U is flowing over it. Assuming
irrotational flow, show that the density of the material must be

to keep it on the plate.
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Potential Flow Kundu & Cohen 6.8

Solution: p
U
—
Note that we are looking at the flow around a
solid hemisphere not a semi-circle. > Ph

‘\0

Due to high speed flow at the top of the sphere, we expect a low pressure at the top of the sphere. This
pressure results in a lift force on the hemsiphere.

Given the velocity field, the pressure distribution at the surface of the sphere can be found using Bernoulli:
1
p(0) = pa = 5p(U* = v(r,0)?)

We can then integrate the pressure at the surface of the hemisphere to find the lift force. The flow around
this hemisphere is the same as that for a sphere because of symmetry about the plate. Thus, streamlines for
this flow can be solved by combining the streamlines for a uniform flow and a doublet.

from Kundu & Cohen pp.192
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where m is the strength of the doublet. First, let us evaluate v,
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Now we must solve for the doublet strength m. We know there is a stagnation point at r = ¢ and 0 = 7
(and also for § = 0) such that our velocities are zero:
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Now substitute this into Eqs (1) and (2)
3
v, =U [1 — (9) } cos 0
r

vg = —U [1 + % (2)1 sin 0

2.25 Advanced Fluid Mechanics 2 Copyright (©) 2010, MIT




Potential Flow Kundu & Cohen 6.8

At the surface of the hemisphere r = a, such that v, = 0 (no flux through the sphere). Thus
3
v(r,@)‘r:a =wvy(a,0) = —§U51n9

Since the pressure is only a function of 6, we can solve for the lift force by integrating the pressure over the
area of the hemisphere projected on the z-y plane, Ay:

SIDE VIEW adb
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From table of integrals: T

1
/sinzmdaz = 5(:(: —sinzcosz) + C

03
3
/sin4xdx = 7W + g(x —sinzcosz) + C

Therefore,
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The sign of this force tells us the pressure has a lifting effect (a positive pressure on an upward facing surface

pushes downward). Thus Fj, = —F, = %ﬂ'paQU 2. The weight of the hemisphere is given by

2
W = pngV = pugzma’
which acts downward. There is also a buoyancy force given by
2
Fp =pgV = pggﬂa?’

which acts upward. To keep the hemisphere on the plate we need the downward acting force W to be greater
than or equal to the upward acting forces, F}, + Fg:
W > Fp + Fp
2 2 11

phggwag > ,oggﬂ'a3 + ﬁﬂ'pa2U2
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Problem Solution by Tony Yu, Fall 2006
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