
MIT Department of Mechanical Engineering 

2.25 Advanced Fluid Mechanics 

Problem 6.21 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

The sketch shows a circular bearing pad which rests on a flat base through the intermediary of a film of 
viscous liquid of instantaneous thickness h(t). The load W causes the pad to sink slowly at the speed S, and 
this squeezes the liquid out from under the pad. Assume that h « D, that the viscosity is very high, and 
that the speed S is very small. 

•	 (a) Making approximations (state them precisely) consistent with theses assumptions, show that the 
settling speed is 

32 Wh3 

S = .	 (6.21a)
3π µD4 

•	 (b) An apparatus with two very flat plates of 0.3 m diameter carries a load of 100 kg on a film 0.003 
cm	 gm cm thick. If the liquid is a heavy oil with a kinematic viscosity of 10 

2 
and a density of 0.93 3 ,s	 cm

estimate the speed S. 

•	 (c) If the load W is constant, and the gap width is h0 at time zero, show that the width h varies with 
time accordingly to   − 1 

2h 64 Wh2
0= 1 + t .	 (6.21b)

h0 3π µD4 

•	 (d) Calculate, for the initial conditions of part (b), the time (in hours) required for the gap width to 
be decreased to half its initial value. 

•	 (e) Suppose now that the initial thickness is h0, and that a constant upward force F pulls the disk 
away from the base. Show that the disk will be pulled away in a time 

3π µD4 

t∞ = .	 (6.21c)
64 h2

0F 

NB When h0 is very small, the time t∞ is very large. This is the basis for the phenomenon of viscous 
adhesion, e.g., adhesives such as Scotch tape, or the apparent adhesion of accurately-ground metal surfaces. 
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Solution: 

• (a) In terms of the flow geometry, the problem is similar to 6.3; the difference here being that the 
flow is “unsteady”. First, let’s use the continuity equation to get some information about the order of 
magnitude of the velocities, 1

1 ∂ ∂uz ur uz(rur) + = 0, ⇒ ∼ . (6.21d) 
r ∂r ∂z r z 

Now, let’s go to the NS equations. Writing the NS equations in cylindrical gap between the bearing 
pad and ground, 

2	 ∂2 ∂2∂u ∂ur uθ ∂ur ∂ur u ∂p 1 ∂ ∂ur 1 ur ur ur 2 ∂uθθρ + ur + + uz − = − +µ r + + − − 
∂t ∂r r ∂θ ∂z r ∂r r ∂r ∂r r2 ∂θ2 ∂z2 r2 r2 ∂θraa r aa  r aa  r aa  r r aa  r aa  raa r aa  aa
I II =0 III	 =0 V V I =0IV 

(6.21e) 
where we relabeled the terms to further make an order of magnitude estimation, also notice that due to 
symmetry, the terms ∂  . Let’s start comparing the terms IV and V , 2

∂θ 

IV h2

∼ « 1, (6.21f) 
V D2

so we can neglect the term IV compared with term V . Also, notice that V I ∼ IV , then V I can be 
neglected when compared to V . Now, let’s compare II to V , then 

II ρvrD h2

∼ « 1,	 (6.21g) 
V µ D2

then II can also be neglected when compared to V . Now, when comparing III to V , we first notice 
that II ∼ III since 

II ur/r uz/z∼ ∼ ∼ 1, (6.21h)
III uz /z uz/z 

where we have used the information obtained from mass conservation. Hence, III vanishes when 
compared to V . 

Now, when comparing I to V , we have 

I ρh2

∼ , (6.21i)
V µτ 

where τ is the time scale involved in the process. The source of unsteadyness is the pad settling down, 
which renders ur and other flow variables time-dependent. Hence, 

h ρSh 
τ ∼ ⇒∼ ,	 (6.21j)

S µ 

Since it is given that S is very small and also h is small, we can safely assume that I can be neglected 
compared to V . Hence we have the NS equation as 

1By now, you should be familiar with this method of obtaining extra information that can be quite useful when comparing 
terms in the NS equations. 

2We’ll compare the terms with term V because, since the gap is small, this is likely to be the largest derivative. 
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− 
∂p 
∂r 

+ µ 
∂2ur 

∂z2 
= 0. (6.21k) 

Integrating we get ur(z), 

ur = 
1 
2µ 

− 
∂p 
∂r 

(zh − z 2) ⇒ (6.21l) 

� h h3πr ∂p h3πr dp
Q(r) = 2πr ur(z)dz = − = − (6.21m)

6µ ∂r 6µ dr0 

Note that Q is a function of r, since the settling down of the pad drives greater and greater flow rates 
as r increases! This can be verified by applying mass conservation in a cylindrical CV, as shown. The 
height of this CV changes as h(t). 

∂ 
ρdV + ρ(V − V ) · ndA = 0, (6.21n)cs∂t CV CV 

⇒ 
∂ 

(πr2h) + 2πrhur = 0, ⇒ −πr2 dh 
= 2πrhur = Q(r). (6.21o)

∂t dt 

Since dh = −S, we have dt 

Q(r) = πr2S. (6.21p) 

Now, we can find the value of the pressure gradient using the flow, then 

dp 6µQ 6µπr2S 6µrS − = = = , ⇒ (6.21q)
dr h3πr h3πr h 

6µSr 3µS D2 
2dp = − dr, ⇒ p(r) = − r , (6.21r)

h3 h3 4 

where the BC used is p(D/2) = 0 (gauge pressure). 

Now, we can perform a vertical force balance on the pad, 

D 
23µS 

� 
D2 3πµSD4 

2W = − r 2πrdr = , (6.21s)
h3

0 4 32h3 
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then, we can finally get the velocity 

S = 
32W h3 

3πµD4 
, (6.21t) 

• (b) Plugging in the numbers, we obtain 

S = 
32 × 100 × ×27 × 10−15 

3π × 0.93 × 81 × 10−4 
= 1.2 × 10−9[m/s] 

very small, which agrees with our assumptions. 

• (c) From the velocity equation, we can integrate to obtain the displacement 

(6.21u) 

S = − 
dh 
dt 

= 
32W h3 

3πµD4 
⇒ − 

h 

h0 

dh' 

h'3 
= 

t 

0 

32W 
3πµD4 

dt' , (6.21v) 

then, upon integration we have 

     
  h   t 

1 1 32Wt' 1 1 64Wt 1 1 64Wh2
01 + (6.21w) − − ⇒ − = ⇒= = t

2 h'2 3πµD4 h2 3πµD4 
0 h2 h2 

0 3πµD4h2 
h0 0 

which gives 

− 1 
2h 64Wh2

0⇒ = 1 + t . (6.21x)
h0 3πµD4 

• (d) Using 2h = h0, and plugging in the variables, we get the required time as 10.4 hours. 

dh• (e) Since S' = , instead of − dh , we have dt dt 

1 1 64Ft − = . (6.21y) 
h2 h2 3πµD4 

0 

As the disk is pulled away, h →∞ then for this limit,
 

3πµD4
 

t∞ = . (6.21z)
64h2

0F 

D 

Problem Solution by MK/MC(Updated), Fall 2008 
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