
MIT Department of Mechanical Engineering 
2.25 Advanced Fluid Mechanics 

Problem 6.01 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Oil is confined in a 10 [cm] diameter cylinder by a piston with a clearance of 0.0002 [cm]. The piston is 5 
[cm] long, and the oil has a viscosity coefficient of 0.05 [kg/ms] and a density of 920 [kg/m3]. 

A total weight of 100 [kg] is applied to the piston. Estimate the leakage rate of oil past the piston, in 
liters/day. Justify any approximations you use in arriving at your estimate. 
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Solution: 
Let’s calculate the Reynolds number for this problem, 

ρV H 920 ∗ U ∗ 0.00002 
Re = = = 0.368U, (6.01a) 

µ 0.05 

then, even assuming a velocity of 0.1[m/s], the Reynold’s number is small, and the lubrication approximation 
1 (Low Reynold’s number) can be used as an initial assumption 2 . Also, we’ll assume a pressure driven flow 
because, from the flow geometry, 

Qoil UOil,avg2πRH H 
Upiston = = = 2UOil,avg , (6.01b)

Apiston πR2 R 

is pretty small, and therefore the viscous flow that it creates. 

From the N-S in cylindrical coordinates, the equation can be reduced to (using the low Reynolds approxi­
mation for Pressure driven flow), 

1 ∂p 1 ∂ ∂vz0 = − + r , (6.01c) 
µ ∂z r ∂r ∂r

where the first term, pressure drop rate, is approximately a constant across the space between the cylinders 
(long cylinder/small gap approximation), then 

1 ∂ ∂vz0 = −K + r . (6.01d) 
r ∂r ∂r

Furthermore, since the gap is small, 1 » h/R, it is possible to approximate this problem using a local 
cartesian coordinate system, (see problem 6.4, Sonin and Shapiro) 

∂(vz )20 = −K + 
∂y2

. (6.01e) 

then, integrating, 

vz = K 
y2

2 
+ C1y + C2. (6.01f) 

Then, applying the boundary conditions, 

vz (y = 0) = 0, (6.01g) 
vz(y = H) = 0, (6.01h) 

h1The lubrication approximation, Reh < 1 is really less restrictive, the Reynolds number can be large, as long as this 
L 

combination of parameters gives a small number still, but since h < 1 having the Reynolds number small is more than enough. 
L 

2We’ll verify this later. 
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where H = R2 − R1 = 0.002[cm], and the origin of the reference coordinate system, y = 0, is located at 
r = R1. Now, using the B.C., the constants can be obtained, 

C2 = 0, (6.01i) 
H 

C1 = −K 
2 

, (6.01j) 

then, 

vz = K 
y2 

2 
− 

Hy 
2 

. (6.01k) 

then, the resulting velocity profile is a Poiseuille Flow (notice that this could have been inferred since the 
beginning of the problem). Now, to obtain the flux, let’s integrate this expression, 

� H � H 2y Hy 
2πR vz = 2πR K − dy. (6.01l) 

0 0 2 2 

After integration, 

    H3y Hy2 
(6.01m)Q = πRK −

3 2 0 

then, finally, 

πR πRΔP 
Q = − KH3 = H3 . (6.01n)

6 6Lµ 

Now, let’s look at a force balance of the piston,

 
Fy = −W + Fviscous + ΔP πR2 = (Massp)ay. (6.01o) 

In this case the weight of the piston creates almost all the total pressure and viscous stresses can be neglected. 
To justify this, let’s take a look at the viscous stresses for a second. The viscous force upwards is supplied 
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by the pressure force exerted on the liquid just beneath and entering the gap between the piston and the 
cylinder, and can’t be higher than that (think about Momentum Conservation in a CV that encompasses 
the oil around the piston), then, 

Fviscous ∼ ΔPAgap ≈ 2πRHΔP, (6.01p) 

on the other hand, the force coming from the pressure beneath the piston is 

FP iston F ace = ΔP πR2 , (6.01q) 

then, the viscous force is much more smaller than the pressure force beneath the piston and almost completely 
balances by itself the piston weight 3 . Then, 

−W + ΔP πR2 = 0. (6.01r) 

Therefore, the pressure under the cylinder can be calculated as 

W mg 100 ∗ 9.8[N ] 39.2e4 
Pbelow = + Pa = + Pa = + Pa = [N/m2] + Pa (6.01s)

Area π(r)2 π(0.05)2[m2] π

Here, the change in pressure due to gravity was neglected because the distance is small to be important, 
more precisely, the total pressure change due to gravity is 

P = ρgH = 920 ∗ 9.8 ∗ 0.05[N/m2] = 450[Pa], (6.01t) 

which is 1% of the pressure due to the weight, then 

∂P 39.2e4 
= [N/m2] (6.01u)

∂z πL

3The acceleration is small because we have assumed a slow process as part of the low Reynolds assumption, to be checked 
later.
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Now, substituting the given values, 

Q = 
π(0.05[m])(39.2e4[P a]) 

6π(0.05[m])(0.05[kg/(ms)]) 
((2e(−5))[m])3 = 1.04e(−8)[m 3/s], (6.01v) 

Now transforming into liters/hour, 
Q = 37[ml/hour] (6.01w) 

D 

Problem Solution by MC, Fall 2008 
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