
  

THE GENERAL FORM	
  OF REYNOLDS	
  EQUATIONS

• For a general (moving) boundary with ( h x,t ) 
• The flow can	
  be	
  unsteady	
  but is fully-­‐developed	
  
locally.	
  

1. Beginning from	
  the locally fully-­‐developed	
  flow derived in class, for which we required
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that	
    1 , ReL  1 , we	
  know that the	
  velocity	
  profile	
  in the	
  gap	
  is:⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟L L 

⎛ y ⎞ h(x,t)2 ⎛ dp⎞ ⎡ y ⎛ y ⎞ 
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vx (x, y,t) = U 1 − − ⎢ ⎥ (1)
⎝⎜ h(x,t)⎠⎟ 

+ 
2µ ⎝⎜ dx ⎠⎟ h(x,t) 

− 
⎝⎜ h(x,t)⎠⎟ ⎣⎢ ⎦⎥ 

Couette Poiseuille
(wall driven) (pressure driven)

Integrating	
  this expression	
  gives an expression	
  for	
  the	
  local flow rate	
  q′ at any given slice:

h(x,t ) h(x,t)3 ⎛ ∂p ⎞ 1q′(x,t) ≡ ∫ vx dy = − 
⎠⎟ 
+ Uh(x,t) (2)

0 12µ ⎝⎜ ∂x 2 

**Note that this may not be constant along the channel because of the squeezing flow
induced by vertical motion of the channel boundary at h(x,t).	
  

2. We combine with this with an integrated analysis of the flow in the vertical direction, and
the use of what is commonly called the “kinematic boundary condition” at the upper plate.

– This links the displacement in the boundary motion to the local	
  fluid	
  flow rate
– Essentially	
  we apply conservation of mass to the thin strip of fluid ( h x,t )dx 

∂vya).	
   We start with ∂vx + = 0 , integrate	
  in y to	
  obtain
∂x ∂y 

h( x )h(x ) ∂vy∂vx ⌠

⎮⌡0 0 

⌠⎮⌡
y= h x,t )?( ) + Vy y= 0

( = 0 (3b)
The second integral introduces	
  the	
  boundary	
  conditions	
  for the	
  
vertical rate of displacement of the upper and lower surfaces (which may be stationary	
  or
moving BCs).	
  
To find the first	
  term, labeled ? in eq. 3, we need to use the Leibnitz Theorem,	
  in the form:( ) 
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general form	
  of Reynolds Lubrication	
  Equation.	
  

recognizing that here f = vx , a = 0 and	
  b = h(x), we can	
  write that	
  

h(x ) ∂vx d(0) d h dhdy =
 vx dy − U
 y= 0 (4)vx y= h − 

The first term	
  on the right-hand	
  side is nothing	
  but the	
  variation	
  in the	
  flow rate	
  of fluid	
   
along	
  the gap (which again	
  we re-emphasize might not be constant because of the 
squeezing	
  induced	
  by	
  the	
  top plate	
  etc).	
  

• The terms	
  in { } again have to be evaluated	
  based	
  on the	
  actual boundary	
  conditions	
  of the
specific	
  problem at the top and bottom	
  plates.

dq′ dh
Combining eq.(3) with 2(b) results in the expression: − U y=h 

= 0 (5)	
  h + Vy=dx dx 

[Alternately you can apply a control volume analysis directly to a thin slice of the form	
  
shown	
  in the	
  sketch	
  above	
  to	
  arrive	
  at exactly the same final result].

b) To simplify this result, we can recognize that the equation for the location of the free
surface is simply the solution of the equation: y − h(x,t) = 0 . Sincematerial points on the	
  
surface	
  stay	
  on the	
  surface as it moves and deforms, we can	
  take the convected derivative of

∫0 

this expression	
   thatso

dhD (y − h(x,t)) = 0 ⇒ −
∂h 

− vx y=h 
= 0 (6)+ vyy=hDt ∂t dx 

⌠⎮⌡0

This is commonly known as the	
  kinematic boundary	
  condition and it is of exactly the same 
form	
  as the	
   expression	
  derived in eq. (5). Combining eq. (5) and (6)	
  thus	
  results	
  in the	
  
following	
  much simpler expression:

dq′ ∂h
+ = 0 (7)

dx ∂t 

3) We can now combine this with the result obtained	
  in eq. (2) to	
  obtain	
  the following
nonlinear coupled PDE:

⎧
⎨
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⎫
⎬
⎭∂x dx dx dx 

This	
  is referred to	
  as	
  the If the shape	
  of the
boundary and it’s displacement are specified (i.e. h(x,t) is given) then	
  it	
  gives a second
order differential equation	
  that can	
  be	
  solved	
  for the	
  pressure	
  field	
  p(x,t) (subject to
appropriate boundary	
  conditions on	
  the pressure field at the edge of the fluid film).
Alternatively it can be combined with a global force balance on a moving block or plate or
other object that has a thin film	
  of viscous fluid underneath it to develop	
  a differential
equation for the motion of the block. It is thus the starting	
  point for many different
research	
  topics	
  as	
  well as	
  homework or qualifying problems!
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There are many, many generalizations, e.g.
– cylindrical coordinates
– compressible fluids
– ‘suction’ or ‘porous wall’	
  boundary conditions
– stretching	
  surfaces,	
  collapsing,	
  bending	
  surfaces

*All collapse down to the same basic physics, which is the key thing
to internalize:

(i) nondimensionalize governing	
  equations of motion.
2 

0 ReL ⎜ 

(iii) solve	
  locally	
  fully-­‐developed	
  viscous	
  flow in slice dx
(iv) integrate	
  across	
  the slice	
  (i.e. the	
   “fast” direction)	
  to find an integrated quantity	
  

such	
  as	
  the	
  local flow rate	
  per unit depth,	
  q′(x) 
(v) use conservation of mass or other appropriate BCs to integrate	
  along	
  the “slow”	
  

direction,	
  along	
  which	
  integrated	
  quantity	
  q′(x) varies

⎛
⎝

Remember that effectively we have the following	
  two independent	
  constraints:

⎛ 
⎜⎝ 

L andt t t y y xV 
i.e. the time-­‐scale for diffusion of vorticity information across the	
  thin gap is always much
shorter than the time required for the information to be convected along the gap by the
fluid	
  flow (with convection time tconv ~ L / V ) or to	
  diffuse along	
  the	
  gap	
  (with	
  a
characteristic time scale tx ~ L2 ν ). This is why	
  we	
  say	
  the	
  flow is locally	
  fully-­developed.

• The second constraint is the same as saying: h2 L2  1 
• The first	
  constraint	
  can	
  be rearranged several	
  different	
  ways:

h2 L ρVh2 ⎛ ρVh ⎞ ⎛ h ⎞ ⎛ ρVL ⎞ ⎛ h ⎞ 
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ρ  ⇒  1 or 
⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟ 

 1 or 
⎝⎜ ⎠⎟ ⎝⎜ ⎠⎟ 

 1 
µ V µL µ L µ L 
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 ⎞
⎞
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(ii) drop “small” terms i.e. ⎟⎠
 
...
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