
MIT Department of Mechanical Engineering 
2.25 Advanced Fluid Mechanics 

Problem 4.05 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 

Consider the frictionless, steady flow of a compressible fluid in an infinitesimal stream tube. 

(a) Demonstrate by the continuity and momentum theorems that 

dρ dA dV 
+ + = 0 ρ A V 

dp + ρV dV + ρgdz = 0 

(b) Determine the integrated forms of these equations for an incompressible fluid. 

(c) Derive the appropriate equations for unsteady frictionless, compressible flow, in a stream tube of cross-
sectional area which depends on both space and time. 
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Solution:  
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(a) Here we consider an arbitrary control volume, CV , sitting along a streamline of length ds. For steady 
flow, we may write the integral mass conservation equation as 

ρu · ˆ (4.05a)ndA = 0 
CS 

To evaluate this integral we must decompose it into three integrals for the three sub-control surfaces of this 
volume. For CS1 located at the upstream portion of the CV, the integral is 

ρu · ˆ (4.05b)ndA = −ρV A 
CS1 

For CS2 the result is 

dρu·ndAˆ = (ρ+dρ)(V +dV )(A+dA) = ρV A+ρV dA+ρAdV +dρdV dAddd+V Adρ+ddd
d AdρdV +dddV dρdA+ddd

d dρdV dA 
CS2 

(4.05c) 

where we have neglected higher order terms. There is no flow across CS3 so 

ρu · ˆ (4.05d)ndA = 0 
CS3 

Combining Eq. (4.05b), (4.05c) and (4.05d) into Eq. (4.05a) we obtain 
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−ρV A + ρV A + ρV dA + ρAdV + V Adρ = 0 

Dividing this result by ρV A, we have 

dρ dA dV 
+ + = 0 

ρ A V 
(4.05e) 

Fs,CS1 = pA

Fs,CS2 =(p+dp)(A+dA)

(2p+dp)dA1
2Fs,CS3 ≈

For steady flow, the integral momentum conservation equation is 

   
ρu u · n̂ dA = F (4.05f) 

CS 

To calculate the left hand side of Eq. (4.05f), we calculate the momentum flux across CS1 

  
ρu u · n̂ dA = −ρV 2A (4.05g) 

CS1 

For CS2 the result is 

  
ρu u · n̂ dA = (ρ + dρ)(V + dV )2(A + dA) ≈ ρV 2A + 2ρV AdV + V 2Adρ + ρV 2dA (4.05h) 

CS2 

when we neglect higher order terms. There is no momentum flux across CS3. 

Now we must calculate the sum of the forces acting along the streamline direction. Since the flow is friction­
less, the streamwise forces come only from pressure and gravity, hence 
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F · ŝ = Fgravity,s + Fpressure,s 

The gravitational force is 

Fgravity,s = −(ρ)d∀g sin θ 

    
1 1where the angled brackets indicate the average value. Setting (ρ) = ρ+(ρ+dρ) and ∀ = A+(A+dA) ds2 2

and sin θ = dz , we obtainds 

1     1   1 = − 2ρ + dρ 2A + dA gdz = −ρAgdz − (ρdA + dρA)gdz − dρdAgdzFgravity,s 
2  

   dd
ddd (4.05i)

4 4

where we neglect all terms higher than first order. The force arising from the pressure acting on the control 
volume is 

Fpressure,s = pA − (p + dp)(A + dA) + (p)ACS3 sin θ 

  
1where we set (p) = p + (p + dp) and ACS3 sin θ = dA. Having made these substitutions into the above2

equation we have 

1   1 
Fpressure,s = pA − (p + dp)(A + dA) + 2p + dp dA = −dpA − ddd (4.05j)dpdA

2 2 

where again we neglect the higher order term. 

Combining Eq. (4.05g), (4.05h), (4.05i) and (4.05j) into Eq. (4.05f) we obtain 

−ρV 2A + ρV 2A + 2ρV AdV + V 2Adρ + ρV 2dA = −ρAgdz − dpA 

Eliminating terms and rearranging this result, we have 

  
dV dρ dA 

ρAV dV + ρV 2A + + = −ρAgdz − dpA (4.05k)
V ρ A

Substituting Eq. (4.05e) into this result yields 

ρAV dV = −ρAgdz − dpA (4.05l) 

Diving by A and rearranging we obtain 

dp + ρV dV + ρgdz = 0 (4.05m) 
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(b) When we integrate Eq. (4.05e) from station 1 to station 2 on the streamline, we have 

∫� ρ2 dρ 
∫

 

+

� A2 dA V2 dV 
 + = 0 (4.05n)

ρ1 ρ A1 A

�∫
V1 V

These integrals give 

 (
ρ

 2 

)
A V

ln

 
ρ V A

+ ln 
ρ

 (
2 

 

 )
 

 (
2 2 2 2

+ ln = ln = 0 (4.05o)
1 A1 V1 

 )  (
ρ1A1V1 

 )

This result may be rearranged to show 

ρ1A1V1 = ρ2V2A2 (4.05p)

Again, when we integrate Eq. (4.05m) from station 1 to station 2 on the streamline, we have 

∫� p2 
�∫ V2 

�∫ z2 

dp + ρV dV + ρgdz = 0 (4.05q) 
p1 V1 z1 

Which gives the familiar Bernoulli equation 

1 
p2 − p1 + ρ V 2 

 

 
2 − 2 V 1

 
+ ρg(z2 − z1) = 0 (4.05r)

2 

(c) For unsteady, frictionless, compressible flow, the integral mass conservation equation is 

�∫
∂ρ 

d∀ + 
∫

u 
CV ∂t 

�
ρ

CS 
· ndAˆ  = 0 (4.05s)

The surface integrals in Eq. (4.05b), (4.05c) and (4.05d) remain valid, and the time varying volume integral 
is 

�∫
∂ρ ∂ρ 

d  = Ads (4.05t)
CCV ∂t 

∀
∂t 

since in the limit ds → 0, dA → 0 and thus volume can be written as Ads. Combining Eq. (4.05b), (4.05c), 
(4.05d) and (4.05t) into Eq. (4.05s) and dividing by ρAV we obtain 

1 ∂ρ dρ dA dV 
ds + + + = 0 (4.05u)

ρV ∂t ρ A V 
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For unsteady flow, the integral momentum conservation equation is

∫
∂ρu

d
CV ∂t

∀+

∫
ρu

CS

(
u · n̂

)
dA =

∑
F (4.05v)

The surface integrals and forces in Eq. (4.05g), (4.05h), (4.05i) and (4.05j) remain valid and the time
dependent integral term is

∫
∂ρu d

d
CV ∂t

∀ =
dt

(
ρV
)
Ads (4.05w)

again, since in the limit ds→ 0, dA→ 0 and thus volume is written as Ads. Combining Eq. (4.05g), (4.05h),
(4.05i), (4.05j) and (4.05w) into Eq. (4.05v) we obtain

∂
(
ρV
)
Ads− ρV 2A+ ρV 2A+ 2ρV AdV + V 2Adρ+ ρV 2dA =∂t −ρAgdz − dpA

Eliminating terms, expanding the time derivative, dividing by A, and rearranging the result, we have

∂V 2

(
1 ∂ρ dV dρ dA

ρ ds+ ρV dV + ρV ds+ + +∂t ρV ∂t V ρ A

)
= −ρgdz − dp

Substituting Eq. (4.05u) into the result above , rearranging and dividing by ρ we have

∂V dp
ds+ + V dV + gdz = 0 (4.05x)

∂t ρ

Integrating Eq. (4.05x) from station 1 to station 2 on the streamline, we obtain the unsteady Bernoulli
equation

∫ s2 ∂V
ds+

s1 ∂t

∫ s2 dp 1
ds+

s1 ρ 2

(
V 2
2 − V 2

1

)
+ g(z2 − z1) = 0 (4.05y)

If the fluid is incompressible, Eq. (4.05y) can be simplified into∫ s2 ∂V 1
ρ ds+ p2 − p1 + ρ

(
V 2
2 − V 2

1

)
+ ρg(z2 − z1) = 0 (4.05z)

s1 ∂t 2

�

Problem Solution by Thomas Ober (2010), updated by Shabnam Raayai, Fall 2013
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