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Equation of Motion in Streamline Coordinates 

Ain A. Sonin, MIT, 2004
Updated by Thomas Ober and Gareth McKinley, Oct. 2010
2.25 Advanced Fluid Mechanics 

Euler’s equation expresses the relationship between the velocity and the pressure fields in
inviscid flow. Written in terms of streamline coordinates, this equation gives information 
about not only about the pressure-velocity relationship along a streamline (Bernoulli’s
equation), but also about how these quantities are related as one moves in the direction 
transverse to the streamlines. The transverse relationship is often overlooked in 
textbooks, but is every bit as important for understanding many important flow 
phenomena, a good example being how lift is generated on wings.

A streamline is a line drawn at a given instant in time so that its tangent is at every
point in the direction of the local fluid velocity (Fig. 1). Streamlines indicate local flow
direction, not speed, which usually varies along a streamline. In steady flow the 
streamline pattern remains fixed with time; in unsteady flow the streamline pattern may
change from instant to instant. 

Fig. 1: Streamline coordinates 

In what follows, we simplify the exposition by considering only steady, inviscid flows 
with a conservative body forces (of which gravity is an example). A conservative force 

 
per unit mass G is one that may be expressed as the gradient of a time-invariant scalar 
function,

  
G = -\U(r) , (1) 

and the steady-state Euler equation reduces to 
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1  
V · V V = - Vp -VU(r) . (2) 

P 

A uniform gravitational force per unit mass g pointing in the negative z direction is 
represented by the potential 

U = gz. (3) 

A streamline coordinate system is not chosen arbitrarily, but follows from the
velocity field (which, we note, is not known à priori). Associated uniquely with any point
 
r and time t in a flow field are (Fig. 2): the streamline that passes through the point
(streamlines cannot cross), the streamline’s local radius of curvature R and center of 
curvature, and the following triad of orthogonal unit vectors:

 
i : in the flow direction 
1 
i 

s 

: in the normal direction, away from the local center of curvature 
! y y y 
i 

n 

: in the bi-normal direction, ( i = i x i ).
l l s n 

The unit vectors define incremental distance ds measured along the streamline in the flow 
direction, dn measured in the normal direction, away from the center of curvature, and dl 

 
measured in the bi-normal direction. The radius of curvature R is defined as positive if i 

 
points away from the center of curvature, and negative if i points toward it. The unit 

n 

n 

vectors, the radius of curvature, and the center of curvature all change from point to point
and in unsteady flows from time to time, depending on the velocity field.

To transform Euler’s equation into streamline coordinates, we note that in those
coordinates1, 

! d ! d ! d (4) V = i + i + i 
s 

ds
n 

dn dl 

and
  

V = i V (5) 
s 

 
where V is the magnitude of the velocity vector V . From (4) and (5), 

! d (6) V · V = V 
ds 

and thus 

!f !f !f 1 The gradient of a scalar function f (s,n,l ) is defined by Vf · dr � df (s, n, l ) = ds + dn + dl . Equation (4) follows 
!s !n !l 

    from this definition and the expression dr = i 
s 
ds + i 

n
dn + i 

l 
dl for an incremental displacement in streamline coordinates. 
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      2            V  i 
s  . (7) 2

(V   )V  (V )  
  

 
  

= V i = i + V  
  s 

s s    s2 s 

The unit vector in the last term of (7) changes orientation as one moves along the
  

streamline. The change di in i from s to s+ds is obtained with the construction shown 
in Fig. 2 as 

s s 

! ! ! ds (8) di = -i d8 = -i 
s n n 

R 

Fig. 2: Incremental change in the streamwise unit vector from s to s+ds. 

from which we see that 
  

di 
s 

i 
n (9) = _

ds R 

Using (9) in (7), we obtain the convective acceleration as 

   ( J  d V 
2 

V 
2 

(10) (V · V)V = i i 
s   - nds 2  R 

The first term on the right is the convective acceleration in the direction of the velocity,
and the second is the centripetal acceleration, toward the center of curvature.

The pressure gradient in streamline coordinates is

  p   p   p (11)  p = i + i + i s
 s

n
 n

l
 l 



  

         
   
 

  

 

 

 
 

 

 
           

 

    

 

          

 

    

 

         

 
        

 

              

 

      

 

         

 

       

 

          

 
          

 
 

  

 

 

 
 

 

 
         

 

      

 

        

 

         

 

         

 
         

 

        
   
          

 

 

        
              

4  

Using (10) and (11) in (2), we obtain the equation of motion in streamline coordinates for
steady, inviscid flow as 

( ld V 2 1 dp 
-
dUs-direction: (12)  = - 

ds 2  P ds ds 

V 2 1 dp dU n-direction: - = - - (13) 
R p dn dn 

1 dp dUl-direction: 0 = - - (14) 
P dl dl 

In a uniform gravitational field U=gz and these equations read 

 1 2 1  p  z
V ) =  s-direction: (15) 

 s ( 2   s
 g

 s 

V 2 1 dp dz 
n-direction: - = - - g (16) 

R P dn dn 

1 dp dz
l-direction: 0 = - - g (17) 

P dl dl 

For constant-density flow in a uniform gravitational field, the equations simplify further 
to 

 V 2 

s-direction: d  
(p + Lgz + 

L
J = 0 (18) 

ds 2  

d pV 2 

n-direction: 
dn 

( p + pgz) = 
R 

(19) 

 
l-direction: ( p +  gz) = 0 (20) 

 l 

The s-direction equation (18) states Bernoulli’s theorem: the total pressure⎯the sum 
2 

p + pgz + pV 2 of the static, gravitational, and dynamic pressures⎯remains invariant 
along a streamline.

The n-direction equation (19) states that when there is flow and the streamlines curve, 
the sum p + pgz (which is constant in when the fluid is static) increases in the n-
direction, that is, as one moves away from the local center of curvature. 



  

    

 

       
         
   

 
 

 
               

         

 

       
          

        

 

      
              

            
          

         
      

 

      
 

 
 

            
 
            

            
           

               
           

  

 

           
     

 

         

 

            

 
      

 

5  

The l-direction equation (20) states that p + pgz remains constant for small steps in 
the binormal direction, that is, the pressure distribution is quasi-hydrostatic distribution in 
the l-direction. 

EXAMPLE 

Consider the simple case of 2D, inviscid air flow over a smooth hill (Fig. 3). Far
upstream of the hill the incident velocity is uniform at V . The hill deflects the air around 

= 

it, and a uniform flow is again established far downstream. Far upstream, above, and 
downstream of the hill, the pressure is constant at p and the streamlines are straight (the

= 

hill does not perturb the flow at “infinity”). We shall assume that gravitational effects are
negligible (the medium is air and the hill’s elevation is modest) and the free stream’s
Mach number is small, so that and the density can be taken as constant. Based on the 
available equations, what can we say about the pressure and velocity distributions over
the hill—where is the velocity higher than V , for example, and where lower? 

= 

Fig. 3: Sketch of streamlines in a 2D flow over a hill. 

To answer this question accurately we need to know the shapes of the streamlines
throughout the flow field—or, at least, in the region that is perturbed by the hill. We
don’t have this information, so we proceed by drawing a rough estimate of the streamline
pattern, as shown in Fig. 3. The difference between the pressure at infinity and at the top
of the hill, point (3), can be estimated by integrating equation (19) along the vertical path 
from (3) to ( 0). Since this path follows the local n-direction, R>0 everywhere along it. 
Neglecting the gravitational term, (19) gives 

dp pV 2 

= (21) 
dn R 

from which we see that 
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  V 2dn 
p  p =  > 0 (22) 

3 
3

R 

Thus p
3 < p

= , and according to Bernoulli’s equation (18), it follows that V
3 > V

=
. Using 

similar arguments, we conclude that p = p andV = V , and p > p and V < V , etc. 
1 = 1 = 2 = 2 =

In principle, if R(n) and V(n) can be established or estimated, the integral in (21) can
be evaluated. For example if we find that the flow perturbation caused by the hill is
negligible at elevations greater than some multiple of the height of the hilltop, we might
write for the path from (3) to (0) 

n 
H (23) R  R

hill
e 

where R is the streamlines’ radius of curvature in the vicinity of the hilltop, n is 
hill 

measured from the top of the hill upward, and H = {h is some multiple β of the actual 
height h of the hilltop, the coefficient β being an empirical number. From Bernoulli’s 
equation (18) we also have that 

 V  V p +
2 

= p +

2 

, (24)  
2 2 

Substituting for R and V into (21) from (23) and (24), respectively, we integrate (23) and 
obtain 

 V 

2 H
2 � �

Rhillp  p
3 =   e  1  (25) 

2   

For a low hill such that 2H<<Rhill, the exponential term can be expanded and (25) 
simplified to 

 p  p3  
 V 2

H (26) 
Rhill 

The velocity at point (3) now follows from (24) and (25) as 

H 
R
hillV

3 = V
 
e (27) 

or, in the same low-hill approximation as (26), 

V
3
 V 

 
 
 
1+ 

H   
R
hill

 
  

(28)  
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