
  

 

    

    

    

 

    

    

  

   

    

 

 

Part (a) (2 points) 

Consider the two control volumes shown above.  Steady mass conservation in CV1 gives: 

0
capillary needle

dA dA     v n v n

 
2 2

.
4 4

c n
eo b n

D D
v v v

 
  

(1.1)
 

(1.2)
 

Similarly, in CV2: 

0
needle syringe

dA dA


     v n v n

2 2

.
4 4

n m
n m

D D
v v
 

 

Note that all of the storage terms  /d dt dV vanish because the flow is steady.  Setting 

(1.3)
 

(1.4)
 

(1.2) and (1.4) equal and simplifying, 

  2 2 2 .eo b c n n m mv v D v D v D   (1.5)
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Part (b) (3 points) 

Assumptions 

 The problem statement provided the assumptions of steady, fully developed, and
incompressible flow in the capillary tube.  Thus all / 0t   and

/ 0,  except / 0.z p z     

 Assume the flow is axisymmetric, so that all 
 Assume the flow is unidirectional (no r or  component), and postulate a solution of the

form

 

0
0 .

zv r

 
 

 
 
 

v

Following the figure in part (a), let us use cylindrical coordinates with z increasing from left to 
right.  The Navier-Stokes equation (z component) is 

Under the assumptions we’ve made, the equation becomes 

Constant.zdvd p
r

r dr dr z

  
  
 

(1.7)
 

Boundary conditions 

The general solution is obtained by rearranging (1.7) and integrating twice: 

1. Centerline (r = 0): either / 0zdv dr  or  is finite.zv

2. Wall ( / 2c cr D R  ): .z eov v  (electro-osmotic slip) 

2
1 2

1 ln .
4z

p
v r c r c

z


  


(1.8)
 

The first BC implies that 1 0.c  The second BC implies that 

2
2

1 .
4 c eo

p
c R v

z


  



2

   
2 2

2 2 2
0,

0, steady 0, 0 0, 0, 0, fully 0, / 0 0, fully 0
developed developed/ 0

1 1

r z

z z z z z z z
r z z

v v g

vv v v v v v vp
v v r g

t r r z z r r r r z







  
  

           
  

   
            

            
             

  

(1.6) 
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Thus the solution is 

 
2 2

21 .
4

c
z eo

c

R p r
v r v

z R

  
     

  
(1.9) 

Equation (1.9) is a linear superposition of the solutions for Poiseuille flow and the spatially 
uniform “plug flow” due to electro-osmosis. 

Note: There was an error in the wording of this part.  It asked for the velocity profile in terms of 
the “pressure gradient and 

bv .” It should have said “pressure gradient or 
bv .”  As long as your 

answer was equivalent to (1.9) or (1.11), it was given credit, regardless of the choice of 
variables. 

As discussed in class, the average velocity in Poiseuille flow is equal to half of the maximum 
value, i.e. the value at the centerline.  That is, 

2 2
,max .
2 8 32

b c c
b

v R Dp p
v

z z 

 
    

 
(1.10)
 

Thus the velocity profile could be expressed in terms of 
bv as 

 
2

22 1 .z b eo

c

r
v r v v

R

 
   

 
(1.11)
 

Your sketches needed to show a discernible difference in the relative dominance of the electro-
osmotic and pressure-driven components. One possible solution is shown below: 

-1 -0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

v
z
 / v

eo

r/
R

c

Weak dp/dz

-1 -0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

v
z
 / v

eo

r/
R

c

Strong dp/dz

Note also that the coordinate system used here was not the only choice.  For example, we could 
let z increase from right to left.  In this case, the solution will be exactly the same as in (1.9) or 
(1.11) except the sign of every term on the right-hand side will be flipped. 
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Part (c) (2 points) 

Part (b) showed that there are two contributions to the volume flow rate in the capillary: electro-
osmotic flow and the pressure-driven backflow. The volume flow rate associated with the 
backflow is given by the Hagen-Poiseuille equation: 

 44
1 .

128 128
c atmc

backflow

c

D p pD p
Q

z L



 

 
  

 
(1.12) 

This volume flow rate is related to the average backflow velocity bv by 

 4 2
1 .

128 4
c atm c

b

c

D p p D
v

L

 




 (1.13)
 

Thus the pressure difference along the capillary is 

1 2

32 .b c
atm

c

v L
p p

D


  (1.14)
 

We know from the problem statement that the pressure drop across the needle and microsyringe 
together is also  1 .atmp p Since the individual pressure drops across the needle and 

microsyringe are additive, we can also write 

1 2 2

32 32 .m m n n
atm

m n

v L v L
p p

D D

 
   (1.15)
 

Setting (1.14) and (1.15) equal and simplifying, 

2 2 2 .b c m m n n

c m n

v L v L v L

D D D
  (1.16)
 

Part (d) (1 point) 

In this part, we are effectively replacing the needle+microsyringe with a new microsyringe with 
the same pressure drop, diameter, and average velocity, which will require it to have a different 
length, Leff. Thus we can use the same strategy of part (c) and apply the Hagen-Poiseuille 
equation across this new microsyringe.  We want to find Leff such that 

2 2 2 .m effm m n n

m n m

v Lv L v L

D D D
 

Noting from part (a) (equation (1.5)) that  
2/ ,n m m nv v D D we can rewrite this expression as 

(1.17)
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2
2 4 2

m effm m m n
m

m n m

v Lv L v L
D

D D D
  (1.18)
 

Thus (1.17) is satisfied if 

Part (e) (3 points) 

4 4

1 .m n m
eff m n m

n m n

D L D
L L L L

D L D

    
       
     

(1.19) 

We seek two unknowns:  and .m bv v These quantities are related to one another by the mass 
balance (1.5) 

 2 2.m m eo b cv D v v D  (1.20)
 

Another relationship is given by setting (1.16) and (1.17) equal: 

2 2 .m effb c

c m

v Lv L

D D
 (1.21)
 

(1.20) and (1.21) are two equations with two unknowns,  and .m bv v Solving (1.21) for 
bv and 

inserting into (1.20), 

2 2 2 4

.effc c c c
m eo b eo m

m m m c m

LD D D D
v v v v v

D D D L D

       
          

       
(1.22) 

Rearranging, we have 

4 2

1 eff c c
m eo

c m m

L D D
v v

L D D

    
     
     

(1.23) 

or 

    
2 2

1 .
/ / /

m

eo m c eff c c m

v

v D D L L D D



(1.24) 

Similarly, 

    

2 2

2 2
1 .

/ / /
eff effb c m c

eo c m eo c m m c eff c c m

L Lv D v D

v L D v L D D D L L D D

   
    

   
(1.25) 
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Simplifying, 

   
4

1 .
1 / /

b

eo m c c eff

v

v D D L L



(1.26)
 

Part (f) (2 points) 

The pressure drop is maximized when the net volume flow rate through the capillary is zero: 

 4 2
max0 .

128 4
c c

net eo

c

D p D
Q v

L

 




   (1.27) 

Thus 

  2max

32 .c eo

c

L v
p

D


  (1.28)
 

Note that a vanishing volume flow rate implies that .b eov v Thus we can also obtain the correct 

answer by simply substituting 
b eov v into the rearranged Hagen-Poiseuille equation, (1.14). 

Part (g) (2 points) 

Setting / ,m effv dL dt we can write equation (3) in the problem statement as 

     
2 2 .

/ / /
eff eo

m c c m eff c

dL v

dt D D D D L L



(1.29)
 

This ordinary differential equation can be solved analytically, or one can make a simple 
1/2/ 1/ .eff eff effL t L L t  dimensional argument that 

,eov   
2/ ,m cD D  and   

21/ /c c mL D D  to clean up To solve the ODE, let us define 

the algebra.  Then (1.29) becomes 

.eff

eff

dL

dt L



 



(1.30)
 

It can be readily verified that (1.30) has the solutions 

 2
12

,eff

t c
L

   



   
 (1.31)
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where c1 is a constant of integration that depends on the initial height of the fluid in the needle 
and syringe. Since Leff is positive and increasing with time, the physical solution is the one with 
the positive coefficient of t. Converting back to the original constants, we have 

 
      

 

2 4 2
1

2

/ / 2 / /

/
m c m c eo c c m

eff c

c m

D D D D v L D D t c
L t L

D D

   
 (1.32) 

where 1 1 .c c   Thus 

1 .
2

n 

Note that this result also implies that 1/2
mL t since 

.eff m
dL dL

dt dt


Thus (1.29) could also have been solved with Lm as the dependent variable rather than Leff. 

7
7



              
                 
               

2.25 Advanced Fluid Mechanics Fall 2013
 

Solution to Problem 2-Quiz 2 2013
 

0.1	
  mm	
  

Figure 1: Rotary atomization at different flow rates (Image: Bavand-HML). 

(a):  
We know that the following independent properties are important for determining the value of  
hR: radius of the cup (R), viscosity (µ), density (ρ), surface tension (σ), volumetric flow rate 
(Q),  and angular speed of the cup (Ω)1. So, for a fixed given θ0, the following holds:  

hR = fun(R, µ, ρ, σ, Q, Ω) 

thus, n = 7 and knowing that there are three dimensions involved in these parameters ([M ],[L], 
and [T ] ⇒ r = 3) we can conclude that at a fixed value of θ0 there are 4 dimensionless groups. 
We select R,ρ, and σ as the repeating parameters and using Buckingham-Pi theorem following 
dimensionless groups will be identified: 

Π1 = hR/R 

Π2 = µ/
J
ρσR 

Π3 = Q
J
ρ/(σR3) 

Π4 = Ω
J
ρR3/σ 

(b):
 
Writing down the conservation of mass we will have:
 

∂ρ 1 ∂ 1 ∂ 1 ∂ 
+ (ρr2 vr) + (ρvθsinθ) + (ρuφ) = 0 

2∂t r ∂r rsinθ ∂θ rsinθ ∂φ

we already know that due to axi-symmetry ∂/∂φ = 0 thus the continuity equation simplifies 
to: 

∂ρ 1 ∂ 1 ∂ 
+ (ρr2 vr) + (ρvθsinθ) = 0 

2∂t r ∂r rsinθ ∂θ 
1the angle of the cup (θ0) is another important parameter and we can keep it separate since it is already 

dimensionless 

Solution by B.K. and G.H.M., 2013 8



 

 
 

 

2.25 Advanced Fluid Mechanics Fall 2013
 

now knowing the scale of different parameters (vr ∼ VR, vθ ∼ Vθ, r  ∼ R, θ ∼ δθ ∼ h/R), we can 
proceed with a scaling argument: 

hVR Vθ∼ ⇒ Vθ ∼ δθVR ∼ VR ⇒ vθ << vr
R  Rδθ R

(c):
 
Writing down N.S.E in spherical coordinates:
 

 2 2
∂vr vθ + vφ −1 ∂P 2vr 2 ∂(vθsinθ) 2 ∂vφ2+ (v.∇).vr − = + ν ∇ vr − − − 
∂t r ρ ∂r r2 r2sinθ ∂θ r2sinθ ∂φ 

now using the appropriate scales for length and velocities involved (vr ∼ VR, vθ ∼ Vθ ∼ 
δθVR << VR, r  ∼ R, θ ∼ δθ << 1, t  ∼ τ ∼ ∞), the Also using the problem’s hint or N.S.E 
for the θ−component it is easy to show that within the thin layer pressure is constant and 
atmospheric (P ∼ Pa), thus N.S.E. for the r−component will be simplified to: 

VR VR VR
O(1) + VR O(1) + VR O(1) + 0 − (0 + Rsin2θ0Ω

2) =∞ R R
VR VR VR VR

0 +  ν O(1) + O(1) + 0 − O(1) − O(1) − 0 
R2 R2(δθ)2 R2 R2 

If δθ << 1 or (rδθ/r) << 1 then the dominant viscous term will be: 

( )
ν ∂ ∂vr

if (δθ)2 << 1 ⇒ Dominant Viscous Term: sinθ (1) 
r2sinθ ∂θ ∂θ 

For ignoring the inertia convection terms the criterion will be: 

ρVRRδθ ρVRh h h  
if (δθ) << 1 or equally if: = Reh << 1  (2)

μ μ R R 

For ignoring the temporal derivative the criterion will be: 

R2δθ2 

if τ → ∞ ⇒ = 0 (3)
ντ 

One may argue that based on the selection of the reference frame the time scale may change 
from ∞ to 1/Ω, in that case the condition in Equation (3) will change to: 

R2δθ2Ω 
<< 1

ν 

With the three mentioned criteria one can see that all the terms on the left hand side of the 
N.S.E. (r−component) other than the centripetal acceleration vanish, the scaling for centripetal 
acceleration shows that compared to the viscous terms they may be large enough and we have 
to keep them: 

Centripetal Rsinθ2Ω2 

∼ ∼ O(1)
V iscous νVR/R2δθ2 

after simplifying the N.S.E (r−component) we will be left with the following: 
( ) 

vφ 
2 

ν ∂ ∂vr 
+ sinθ = 0

r r2sinθ ∂θ ∂θ 

Solution by B.K. and G.H.M., 2013
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since θ ∼ θ0 = const. in the thin film, then we can further simplify the N.S.E into:

1 ∂2vr
r2

ρΩ2rsin2θ0
+

∂θ2
= 0

μ
(4)

O Ω
θ0

θ

 Q

r

h(r)

 x r

 y r(θ0 −θ )h(r)

x r

y r(θ0 −θ )

hR

ξ = r sinθ0

Figure 2: Schematics of the problem.

(d):
As shown in Figure 2 we move to a local cartesian coordinate system (x−y) and the boundary
conditions for y = 0will be:

vθ = 0

vφ = rsinθ0Ω

vr = 0

and for y = h(r):

vθ =?

vφ rsinθ0Ω

∂vr 1
=

∂y

∂vr
r

vr = 0
∂θ

(e):

Solution by B.K. and G.H.M., 201310
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Equation (4) in the x − y coordinate system will be: 

∂2vx ρΩ2xsin2θ0 
+  = 0

∂y2 μ 

after integrating we will get: 

ρΩ2sin2θ0r 
vr = h(r)y − y 2/2 (5)

μ 

(f):
 
In order to find the volumetric flow rate we just need to integrate the velocity along the liquid
 
height:


h(r) h(r) ρΩ2sin2θ0r 
Q = 2π(rsinθ0) vrdy = 2πrsinθ0 (hy − y 2/2)dy

μ0 0 

which can be simplified to: 
(
ρΩ2sin2θ0r h

3 )
Q(r) = (2πrsinθ0) 

μ 3 

Thus h(r) can  be  shown to be:

( )1/33μQ
h(r) =  (6)

2πρΩ2r2sin2θ0 

(g):
 
In order to find the pathline we use the definition of a pathline:
 

drs
= vr

dt 
dφs

= Ω
dt 

which will lead to: 
drs vr 

= 
dφs Ω 

For a particle or bubble at the liquid surface we have: 

ρΩ2sin2θ0r h
2 

vr(y = h(r)) = (7) 
μ 2 

and we also know that: ( )1/33μQ
h(r) =  (8)

2πρΩ2r2sin2θ0 

thus one can easily show that: 

( )1/3
drs 9ρQ2 −1/3 = rsdφs 32π2μΩ 

Solution by B.K. and G.H.M., 2013
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∫ ∫
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which results in:
 ( )1/3
drs 9ρQ2 

= Ar−1/3 in which A = sdφs 32π2μΩ 

Using this relationships one can actually follow the spirals that the liquid make in the bell 
atomizer and find an estimate for the spacing of the spirals by solving for the change in rs over 
a 2π change in φ. The algebra will give: 

(
16ρQ2 )1/4 

Δrs = 
μΩ 

or in the dimensionless form: ( 
16Π2 )1/4 

3Δrs = 
Π2Π4 

Figure 3 shows a comparison between the predictions from theory and the experimental mea­
surements for the spiral’s spacing. 

Δ
ξ
or
Δ
r
s 

ï�
��

16ρQ2

μΩR4 
ï�

��

ï�
��

ï�
��

ï8
��

Δrs
R 

= 

( 
16Π2

3

Π2Π4

)1/4 

Δrs = 

( 
16ρQ2 

μΩ 

)1/4 

ï� ï� ï� �
�� �� �� ��

Δξ/2R or Δrs/2R 

Figure 3: Results from Hinze et al. ([]) showing the agreement between measurements of the 
liquid’s spiral spacing and the lubrication theory predictions. 

Solution by B.K. and G.H.M., 2013
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Extra information: 
One aspect of this problem which we did not cover is the behavior of liquid drops/ligaments/film 
at the rim of the cup. Experimentally the formation of drops, ligaments, and film at the rim has 
been seen at different working conditions (Figure 1 and 5(a,b,c)). It is interesting to observe 
that all the experimental data maps on a phase diagram which is made by combination of 
dimensionless numbers you got for this problem in part (a) (Figures 4 and 5). 

Figure 4: Results from Hinze et al. ([]) showing the performance map for the rotary atomization 
described with dimensionless groups introduced in this problem. 

Table 1 summarizes all the important parameters acting on different control surfaces for the 
selected control volume: 

Solution by B.K. and G.H.M., 201313
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v
Q ρ ( √μ )1/6���� 
D σD ρσD

Figure 5: (a) Single drop formation stage (b) Ligament formation stage (c) Liquid film for­
mation stage. (d) Results from Hinze et al. ([]) showing the performance map for the rotary 
atomization described with dimensionless groups introduced in this problem. 
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