
    
   

       

  
   

     
 

 
  

   
 

           

    

      

      

 

 

 

      

 

   

       

2.25 – Fluid Mechanics – Fall 2013 
Solutions to quiz 1, problem 1 

Part a (verbal interpretation of Bernoulli’s equation) 

	 Along a streamline: Bernoulli’s equation is essentially a special case of the balance of 
energy for a moving fluid element.  For steady, inviscid, incompressible flow along a 
streamline, the work done on a fluid element by pressure forces and gravity causes a 
change in the kinetic energy of the element. 

	 Normal to a streamline: This form of Bernoulli’s equation is a force balance across 
streamlines.  Fluid elements moving along curved streamlines experience a centripetal 
force due either to gradients in pressure or gravitational body forces, both of which act 
toward the local center of curvature. 

Part b (show that B is a true constant for irrotational flow) 

There are several ways to do this part.  Below we show two possible methods. 

“Standard” solution: Let the velocity vector .x yv ue ve  Under the assumptions we have 

made, the flow is described by the Euler equations in the x and y directions: 

,

.

u u pu v
x y x

v v pu v g
x y y



 

   
   

   

   
    

   

The vorticity is zero by definition of an irrotational flow: 

0 .z
v u v ue
x y x y


    

     
    

Substituting / /v x u y     into the Euler equations (and dividing through by ) 

1 ,

1 .

u v pu v
x x x

u v pu v g
y y y





  
  

  

  
   

  

Now, consider an infinitesimal displacement vector in an arbitrary direction, .x ydr dxe dye 

Multiplying the Euler equations in x and y by dx and dy respectively, 
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1 ,

1 .

u v pu dx v dx dx
x x x

u v pu dy v dy dy gdy
y y y





  
  

  

  
   

  

Adding these equations gives 

1 .u u v v p pu dx dy v dx dy dx dy gdy
x y x y x y

du dv dp



          
           

          

  

Since the terms in parentheses are the total differentials of u, v, and p along ,dr this equation 
becomes 

,dpudu vdv gdy


   

or 

2 2

0.
2 2
u v dpd d gdy



   
      

   

Integrating indefinitely, and assuming the flow is incompressible, we obtain Bernoulli’s 
equation, 

2 2

,
2

u v p gy B



  

where B is a constant.  Since we have made no assumptions about the direction of the 
displacement vector ,dr we conclude that the constant B must be the same for any ,dr that is, it 
must be the same everywhere in the flow. 

“Elegant” solution: 

Using the vector identity    / 2 ,v v v v v v      one can rewrite the general vector 

Euler equation in the form 

 
2

.
2
vv p gy v v v

t




 
        

 
 
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Here  v  is the velocity magnitude.  In this case the  right-hand side  is identically zero  because 

the flow is irrotational.  If we assume  a steady  flow and integrate the resulting equation, we are  
left with  

2

2
v p gy B


  

This equation applies everywhere in the flow field; therefore, the Bernoulli constant is the same 
everywhere in an arbitrary inviscid, irrotational (“potential”) flow. 

Part c (show that velocity is independent of  and z) 

There are several ways to do both parts.  Below we show the most straightforward way for each. 

Independent of : Consider the differential statement of the conservation of mass for this 
steady, incompressible flow in cylindrical coordinates: 

 
1 1 0.

00

z
r

v vv rv
r r r z





 
    

  



Since it was given that the streamlines in the bend are circular arcs, this implies that 0.r zv v 

Thus, the first and third terms vanish, and we are left with / 0.v    Clearly, this implies that 

velocity in the bend is independent of . This part is also relatively straightforward to show with 
the control-volume statement of mass conservation. 

Independent of z (actually shows independent of  as well): Consider Euler’s equation in z: 

  0.p gz
z




 


Integrating this equation gives   ,p gz C f r   where C is a constant.  Noting that 

  at ,atmp p z h r  we see that at any value of r, 

 .atmp gz p gh r   

We can substitute this result into Bernoulli’s equation normal to a streamline in the bend (which 
is really Euler’s equation in the r direction): 

    
2

.atm
vp gz p gh r

r r r


 
 

   
 
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Simplifying, 

2 .dhv rg
dr 

This equation depends on r only, thus v does not depend on z or . 

Part d (argue that the Bernoulli constant is the same for all streamlines; show that vr=K) 

The key to this part is to recognize that under the assumptions we have made, any streamline in 
the bend originates somewhere in the inlet, where the velocity is uniform (station 1). 

If we apply the z-direction Euler equation to the inlet, we can write the Bernoulli constant in the 
entire inlet region as 

2
1 1inlet atmB vp gh  

since the fluid height at the inlet is equal to h1 everywhere. Since all streamlines in the bend 
originate at the inlet, and since B is constant along a streamline by definition, the value of B for 
any streamline is equal to Binlet: 

2 2
1

1 .
2 2atm inlet

bend

v vp gz p gh B 
 

 
      

 

Thus, the Bernoulli constant is the same for all streamlines in this flow. 

There are many ways to determine the velocity profile. One possible way is to take the radial 
derivative of the Bernoulli equation along a streamline to obtain: 

 
2 2

0 ,
2 2
v v vBp gz p gz v

r r r r r
  



 
  

       
            

       

where / 0B r   because B is constant everywhere in the flow.  We also know from Bernoulli’s 
equation in the radial direction that 

 
2

.vp gz
r r





 



Thus we can set 

2

.v vv
r r
 







 



Simplifying and rearranging, 
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   0 ln ln 0.dv dr d v d r
v r






    

Integrating, 

   ln ln ,v r C  

where C is a constant of integration.  Exponentiating both sides, 

where K is another constant.
 

Part e (derive the shape of the free surface in the bend)
 

Consider a streamline along the free surface extending from the inlet to somewhere in the bend.  
Bernoulli’s equation along this streamline is 

 
22

1
1 .

2 2inlet atm atm
vvB B p gh p gh r 

       

Equation (24) is valid for any streamline (i.e., at any value of r or z) because B is the same for all 
streamlines.  Simplifying, 

   
 

222
1

1

/
.

2 2 2
K rvvgh gh r gh r


      

Solving for h, 

 
2 2
1

1 2 .
2 2
v Kh r h
g gr

  

Part f (derive a condition on K from a control-volume theorem) 

Consider a control volume that surrounds the liquid in the bend, from the inlet to some arbitrary 
cross section in the bend. Applying form A of the control-volume statement of conservation of 
mass, 

  0.

0, steady

c
CV CS

d dV v v ndA
dt

    



 

Noting that the control surface is not moving ( 0cv  ), the flux integral over the inlet is 
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 1 1 o i
Inlet

v ndA v h r r    

and at the outlet (which is at an arbitrary cross-section in the bend) it is 

    .o

i

r

r
Outlet

v ndA v r h r dr   

Thus the conservation of mass equation becomes 

 
2 2
1

1 1 1 2

2 3
1

1 3
1

2 3
1

1 2 2
1

2 2

                  1
2 2

1 1                  1 ln
2 4

o

i

o o

i i

r

o i r

r r

r r

o

i i o

vK Kv h r r h dr
r g gr

v dr K drKh
gh r g r

rv KKh
gh r g r r

 
    

 

 
   

 

    
       

     



 

Thus, the constraint on K is 

 
22 3

1
1 1 1 2 2

1

1 ln 1 .
2 4

o i
o i

i i o

r rv Kv h r r Kh
gh r gr r

    
        

     

Part g (explain why Bernoulli is valid for rigid-body rotation) 

Although the fluid is viscous, there is no viscous stress in steady rigid-body rotation since there 
is no relative motion between fluid elements, by definition.  Thus, there are no viscous losses to 
consider.  Since the flow is also incompressible, steady, and without energy input, Bernoulli’s 
equation may be applied along a streamline. 

If one wishes to make a more rigorous argument, one can look at the velocity gradient tensor, 
All components of this tensor vanish except for two: .v

1
0

.
01

r r

r

vv v
r r rv
v v v
r r r



 







  
    

     
    
   

The symmetric (deformation) tensor then reads 

  
0 01 .
0 02

Te v v  
      

 
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2 2

.
2sb atm

rB p gh r  
     

    
   

   

   

 
   

 

    
   

     
   

    
   

 

As expected, fluid elements experience no deformation, only pure rotation. Thus, if we wish to 
calculate the viscous stress tensor, e.g. 2 e  for a Newtonian fluid, we see that there is no 

viscous stress in the flow (at steady state) regardless of how viscous the fluid is.  Thus, there are 
no viscous losses, and Bernoulli’s equation is applicable. 

Part h (show that the Bernoulli constant does not depend on z; show that it does depend on r and 
determine its value for a given r; explain why it varies in this case) 

The Bernoulli equation for this case is 

2 2 2

.
2 2 sb
v rp gz p gz B const  

       

Again, we can integrate Euler’s equation in the z direction to find 

   0 .atmp gz p gz p gh r
z

  


     


Here h(r) is the concave, parabolic shape for the free surface that we derived in class for rigid-
body rotation.  Substituting this relation into the Bernoulli equation, 

This shows both that the Bernoulli constant does not depend on z and that it does depend on r. 
This equation is an acceptable final answer for the Bernoulli constant, but one can also substitute 
the height profile from the class notes (not required for credit) to obtain 

2 2 2 2
2 2.

2 2sb atm atm
r rB p g H p gH r

g
  

   
 

       
 

Since the flow is rotational, the Bernoulli constant is not the same everywhere in the flow field, 
and varies across streamlines as indicated above. 

Interpretation 

Recall that the Bernoulli constant B is roughly a measure of the total energy of a fluid element.  
As one looks outward in r, the fluid elements are moving faster and thus have greater kinetic 
energy.  Thus it makes sense that the total energy of fluid elements increases as r increases, i.e. 
that B varies with r. 

Later in the class, we will show that B is actually constant along both streamlines and vortex 
lines.  In this flow, the vortex lines point in the z direction, so it makes sense that the Bernoulli 
constant does not depend on z. 
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Solution to Problem 2-Quiz 1 2013 
Part I: 
(a): 
The pressure distribution on line AB follows the hydrostatic rule. It is true that the flow is 
not static but by picking an arbitrary control volume at any point on line AB (green dashed 
control volume in Figure 1) one can see that the balance of forces in the y−direction will tell 
us that the difference between the pressure at the bottom and the ambient pressure should 
balance the weight of the liquid inside the control volume. This simply implies that the static 
pressure on line AB should be equal to Pa + ρgh(x). This result is shown in Figure 1. 

�� �� 

h2 

P − Pa
 

ρgh2
 

ρgh1 

x 

Figure 1: Pressure distribution on line AB. 

The pressure distribution on line DEA also follows the hydrostatic change merely due to the 
fact that there is no curvature in the streamlines as one integrates the Euler equation normal to 
them and thus the only change in pressure when one moves from E to A will be the hydrostatic 
part. Ignoring the density of air one can see that the pressure is constant from D to E and 
then start to grow linearly with height as we move from E to A. The result is shown in Figure 
2. 

y 

u1 

h1 

u2 

�� �� 

�� 

x 

xA xB
 

Solution by B.K. and G.H.M., 2013
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y 

��yD 

yE 

yA 

x 

Figure 2: Pressure distribution on line DEA. 

(b) and (c): 
The selected control volume is shown in Figure 3 (dashed green line). One can subtract the 
ambient pressure from the entire problem and knowing that the net effect of uniform Pa acting 
on the control volume is zero then there will be no change in the problem analysis if we only 
deal with gauge pressures (P (x, y) − Pa). 

�� �� 

0 ρgh1 P − Pa 

u1 

h1 �� 

�� 

y 

u2 

u1 

h1 

h2 

�� �� 

�� 

ρgh1 
ρgh2 

P2(y) 

P1(y) 

y
 

x
 

Figure 3: A schematic of the selected control volume for the hydraulic jump problem. 

Table 1 summarizes all the important parameters acting on different control surfaces for the 
selected control volume: 

Solution by B.K. and G.H.M., 2013
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Table 1: Bookkeeping of all the related properties at different control surfaces in the control 
volume. 

n v vc (v − vc).n A P − Pa 

AD −ex u1ex 0 −u1 h1W ρgy 

AB −ey ?ex 0 0 ? ρgh(x) 

BC ex u2ex 0 u2 h2W ρgy 

CD ey 0 0 0 ? 0 

Now we can start by writing the conservation rules using the RTT. It is important to notice 
that due to the turbulent mixing happening in the region of the hydraulic jump, energy will 
not be conserved and thus either applying the conservation of energy or the Bernoulli equation 
will not be the right approach. If we write the conservation of mass for the selected control 
volume then we will have: 

  
d 

C.O.Mass: 0 =  ρdV + ρ(v − vc).ndA 
dt c.v. c.s. 

Knowing that the problem is steady state and using the tabulated quantities, conservation of 
mass can be simplified to: 

ρu1h1 = ρu2h2 ⇒ (1)u1h1 = u2h2 

The conservation of linear momentum in the x direction can  also  be  written in the  RTT form:  
   1 d 

C.O.Momentum: Fx = ρvxdV + ρvx(v − vc).ndA 
W dt c.v. c.s. 

where W is the width into the page.
 
The net of external forces acting in the x-direction on the control volume neglecting the wall
 

shear effect is a result of pressure forces acting on the AD and BC control surfaces: 

       h1 h2 h2 h21 1 2Fx = (P − Pa)dy − (P − Pa)dy = ρgydy − ρgydy = ρg − 
W 2 2AD BC 0 0 

The right hand side of the RTT for the conservation of linear momentum can also be simplified 
to (knowing that the problem is steady and using the tabulated identities): 

R.H.S. of RTT for C.O. Momentum= ρu22h2 − ρu21h1 

thus the conservation of linear momentum implies that: 

  
h2 h2 g   

2 21 2 h21 − h2ρg − = ρu2
2h2 − ρu21h1 ⇒ = u (2)2 2h2 − u1h12 2 2

Solution by B.K. and G.H.M., 2013
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using the result from conservation of mass (equation (1)) one can eliminate u2 from equation 
(2) to give: 

 
g gh22h21 − h2 = h1u1 (h1/h2 − 1) ⇒ u1 = (h1 + h2) (3)22 2h1 

where we have used  the identity  h21 − h22 = (h1 − h2)(h1 + h2). 
Part II: 
(d):
 
For the selected control volume (Figure 4) one can easily write the conservation of mass using
 
Taylor series to obtain expressions for u(x +Δx) and  h(x +Δx):
 

du dh 
u(x)h(x) =  u(x +Δx)h(x +Δx) → u(x)h(x) = (u(x) +  Δx)(h(x) +  Δx)

dx dx 

which after ignoring the second order terms such (Δx2) it can be rewritten as: 

dh du dh du 
Δx u(x) + h(x) = 0  ⇒ u + h = 0  (4)

dx dx dx dx 

Another way to reach the same result is to say that since the flow is incompressible then the 
volumetric flow rate should remain unchanged thus d(uh)/dx = 0 which will lead to the same 
result we just derived in equation (4). 

∆ x 

h(x0 ) h(x0 + ∆ x) 

u(x0 + ∆ x)u(x0 ) 

Figure 4: An arbitrary control volume selected to derive the conservation of mass in the 
differential form. 

(e) and (f): 
One plausible answer is that h(x) decreases since the flow starts to accelerate as it reaches the 
bump and thus due to conservation of mass hu = const. the value of h should decrease (Figure 
5(b)). It is also easy to show that the case of h remaining constant (Figure 5(c)) will be wrong 
since in that case at constant velocity we are gaining height which is similar to generating po­

Solution by B.K. and G.H.M., 2013
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tential energy from nowhere and is thus unphysical1 . For further explanations see the appendix. 

x 

y 

O 

h(x) 

b(x) 

��� 

b(xm ) 
���� 

y 

O 

h(x) = const. 

b(x) b(xm ) 

x 

y 

O 

h(x) is decreasing 

b(x) b(xm ) 

���� 

���� 
x 

Figure 5: (a) Flow approaching the bump (b) The case for low speed flows in which Fr1 < 1 
(c) The non-physical case in which h remains constant. 

Since the incoming flow is smooth and has not undergone tany mixing and also viscous 
effects are negligible we can think of writing Bernoulli equation on a streamline very close to 
the water surface: 

[ ]
1 d 1 

Pa + ρu(x)2 + ρg(h(x)+  b(x)) = const. → Pa + ρu(x)2 + ρg(h(x) +  b(x)) = const. = 0
2 dx 2 

which can be simplified to: 

du dh db 
u(x) + g + g = 0 (5)

dx dx dx 

From conservation of mass (equation (4)) we have: 

dh du dh h(x) du(x) 
u + h = 0  ⇒ = − (6)
dx dx dx u(x) dx 

The mentioned argument holds for cases in which the incoming kinetic energy of the flow before the bump 
is small compared to the potential energy of the fluid (i.e. u1

2 < gh1 or Fr1 < 1). If the initial flow has a high 
kinetic energy compared to its potential energy (i.e. u1

2 > gh1 or Fr1 > 1) then it is possible to see a different 
solution in which h(x) does increase as the liquid goes over the bump. Later in the solution we will see that 
combining the conservation of mass and Bernoulli equation it can be shown that: dh/dx = db/dx(Fr2 − 1)−1

and consequently the rise or decrease in h(x) depends on the Froude number of the entering flow (Fr1). 

Solution by B.K. and G.H.M., 2013
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plugging the result from (6) into (5) will give the following result: 

1 du(x) [ ] db(x) 
u(x 2) − gh(x) + g = 0  (7) 

u(x) dx dx 

+(g): As the flow reaches xm, the slope db/dx becomes zero. Slightly after the bump (x ) we 
  m
+will have a negative value for db/dx (i.e. db/dx < 0 at  x
 ) and thus the sign of the quantity
 m[ ]

du/dx depends on the value of the quantity u(x)2 − gh(x) . Using equation (7) one can see 
+that it means that at x
 we will have the following:
 m

1 du [ ]
u 2 − gh |

u(x) dx 
> 0
+ 

mx 

)2 − gh(x+ +thus depending on the sign of u(x
 ) there will be two situations:
 m m

(i):  
1 du 

:m

 
+[ ]

u2 − gh < 0 ⇒ at x
 < 0
 

u(x) dx
 


+ 
mx 

which means that the flow will decelerate after the bump and with decrease in velocity the 
height will increase due to the conservation of mass, equation (6) as shown in figure 6(a). 

(ii):   1 du+[ ]
u2 − gh > 0 ⇒ at x
 > 0
:
 
 
 m u(x) dx
+ 

mx 

which means that the flow will accelerate after the bump and with the increase in velocity the 
height will decrease due to the conservation of mass (Figure 6(b)). This will lead to a state that 
is called a “super-critical” flow (Fr  >  1) and slightly after the bump the viscous effects become 
important since the speed is increasing and the height is decreasing (remember that γ̇ ∼ v/h) 
and the flow ultimately reaches a point at which it has no more kinetic energy to continue its 
acceleration into the super-critical zone. As a result, hydraulic jump will occur with a lot of 
turbulent energy dissipation and the flow returns into a sub-critical stage (Fr  <  1). Figure 
6(b) shows a sketch of this flow. 
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Figure 6: (a) Physical image for the (i) case. (b) Physical image for the (ii) case. 

(extra additional part of the problem:) 
From equation (7) we have the following: 

1 du(x) [ ] db(x) 
u(x 2) − gh(x) + g = 0  

u(x) dx dx 

using the following: 

du(x) du h(x) 1 d(u2(x)) 1 du 1 d(u2(x)) d 1 
u(x) − g = − gQ = + gQ

dx dx u(x) 2 dx u2(x) dx 2 dx dx u(x) 

we can expand equation (7) into: 

1 d(u2(x)) d 1 db(x)
+ gQ + g = 0  (8)

2 dx dx u(x) dx 

Integrating equation (8) from point 1 to point 2 (far after the bump at which point the surface 
becomes flat again, b(x) = 0) will give the following: 

1 1 1 1 1 12 2 u(x)2 + gQ + gb(x) =  const. → u1 + gQ = u2 + gQ (9)
2 u(x) 2 u1 2 u2 

Equation (9) is nothing but a reformulation of Bernoulli equation or conservation of energy 
between any two arbitrary points on the water surface. Looking at equation (9) it is easy to 
see that one possible solution is u2 = u1 which is the case (i) studied in the previous part. Also 
it is worthy to mention that there is another root which satisfies the following: 

1 1 1 1 1 1 1 12 2 2 2 2 2gQ = u1u2(u1 +u2) → u1 +gQ = u1 + (u2u1 +u2) =  u2 + (u2u1 +u1) =  u2 +gQ
2 2 u1 2 2 2 2 2 u2 
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This second solution or root happens in the case in which the flow is sub-critical before the 
bump, becomes critical at the bump point and then becomes super-critical after the bump. 
Using the definition of the Froude number (Fr  ≡ u2/gh) one can manipulate the derived result 
in equation (9) in the following way (using the hint that Fr  = u3/gQ): 

gQ 1 gQ 1 1 1
2 2 3 3
 u1u2( + u = + u2) → u2(gQ+ u1) =  u1(gQ+ u2) u1 2 1 u2 2 2 2
 
u2 1 u1 1 1 1
 → (1 + Fr1) =  (1 + Fr2) → (gQFr2)

1/3(1 + Fr1) = (gQFr1)
1/3(1 + Fr2)

gQ 2 gQ 2 2 2
 
1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 2/3 2/3→2Fr + Fr Fr1 = 2Fr + Fr Fr2 → 2(Fr − Fr ) =  Fr Fr (Fr − Fr )2 2 1 1 2 1 1 2 2 1
 ( )

1/3 1/3 1/3 1/3⇒ 2 =  Fr Fr Fr + Fr1 2 1 2
 

(10) 
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Appendix: 
The flow that has just been studied in this problem is a well known subject in the hydraulic 
literature. It is worthwhile to mention a few words about different physical aspects of these 
flows which are generally named “open channel flows” in hydraulics. One way to study these 
problems is to introduce two identities called the “specific energy head” (E) and “momentum 
of the flow” (M): 

1 q2 1 2E ≡ + h = u + h 
2 gh2 2g 

(11) 
q2 h2 

M ≡ + 
gh 2 

knowing that q ≡ uh one can easily see that E is the total specific energy and has similari­
ties to Bernoulli constant whereas M is the linear momentum of the flow and when defined 
in this way will have dimensions of length squared. At a constant flow rate (q) one  can plot  
the relationship between h and E (Figure 7) or h and M (Figure 8) using the relationships in 
equation (11). One can easily see that in both equations dE/dh and dM/dh will be zero at 
a critical height hc = (q2/g)1/3 . It is also possible to show that at h = hc the local Froude 
number  which is defined as  Fr  ≡ u2/gh becomes equal to 1 and in fact another way to define 
the Froude number is to define it as the ratio of local height (h) over the critical height (hc) 
(i.e. Fr  ≡ h/hc). Based on this we can categorize open channel flows in three different types: 

•	 Sub-critical flow in which the Froude number is lower than one and the flow is dominated 
by gravity rather than inertia. This is a characteristic for low speed, deep river flows. 

•	 Critical flow in which the Froude number is one and the inertia and gravity are equally 
important. 

•	 Super-critical flow in which the Froude number is higher than one and inertia dominates 
over the gravity. 

Looking to Figures (7) and (8) it is worthwhile to notice that at a constant flow rate for any 
given specific energy (E) or momentum (M) value there are two possible heights: one in the 
sub-critical zone and the other one in the super-critical zone. Also it is noteworthy that for 
specific energies lower than the value at Ec at hc there is no possible physical solution. 
One benefit of these diagrams is enabling us to find solutions for hydraulics problems just by 
visual inspection of the curves. For example in the bump problem we know that the Bernoulli 
equation between points on the free surface is equivalent to: 

1 1 1 1 12 2 u1 + gh1 = u2 + gh2 + gb(x) → g(E1) =  g(E2 + b(x)) ⇒ E2 = E1 − b(x) (12)
2 2 hc hc hc 

where b(x) is the height of the bed of the river.
 
What equation (12) is showing is the fact that knowing the value of E1 we can easily find the
 
solution for E2 and h2 by following the constant q curve and subtracting the b(x) from the 
  
value of E1 (Figure 9).
 

Solution by B.K. and G.H.M., 2013
 16



2.25 Advanced Fluid Mechanics Fall 2013
 

0 2 4 6 8
0 

1 

2 

3 

4 

5 

6 

h
/
h
c 

�����
	���
��
��� 

����
��
	���
��
��� 

�
	���
��
��� 

Fr  <  1 

Fr  = 1  

Fr  >  1 

E/hc 

Figure 7: The specific energy (E)-height (h) diagram for a flow with constant flow rate. In 
which hc is defined as (q2/g)1/3 . 
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Figure 8: The momentum of the flow (M)-height (h) diagram for a flow with constant flow 
rate. In which hc is defined as (q2/g)1/3 . 
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Figure 9: Solution to the bump problem using the constant q curve in the specific energy-
height diagram. The green points show the sub-critical solution while the red points show the 
super-critical solution. 

Using the visual solution from Figure 9 one can easily detect that there are two possible 
branches of solution for the flow over a bump based on the initial Froude number. The sub-
critical solution (Fr  <  1) predicts that as the flow goes over the bump the value of h will 
decrease and the flow will speed up while the super-critical solution (Fr  >  1) predicts the 
opposite. If the flow starts from sub-critical branch in the upstream as it reaches the bump 
it is possible to become very close to the critical point in the specific energy-height diagram 
(Figure 10(b)) but right after the bump with decrease in b(x) it will return to the original point 
and thus all through the process the flow will remain sub-critical. The solution for the change 
in height of the flow over the bump for this case is shown in Figure 10(a). 
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Figure 10: Flow over the bump. Sub-critical solution for the entire flow. 

If the bump is high enough then it is possible that the flow initially is sub-critical but as it passes 
over the bump (where x = xm and db/dx = 0) it becomes critical and with a small perturbation 
after (x = xm) the solution will follow the super-critical branch (Figure 11 (b)). This means that 
before the bump h(x) will decrease as it reaches the bump and after xm this decrease will con­
tinue since the flow has become super-critical (Figure 11). In most hydraulics labs the transition 
from sub-critical to critical and super-critical flow is demonstrated in a water tank experiment of 
the flow over the bump (link on youtube: http://www.youtube.com/watch?v=cRnIsqSTX7Q). 
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Figure 11: Flow over the bump. Sub-critical solution for the flow before the bump, critical at 
xm and super-critical after the bump. 

Another possibility is to have an upstream flow that is already in the super-critical regime. 
The flow this time stays entirely on the super-critical branch of the solution (Figure 12). This 
time the height initially increases and after xm it starts to decrease back to the original height. 
Achieving this flow in the lab is not easy since a hydraulic jump can easily occur either before 
or after the bump. 
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Figure 12: Flow over the bump. Super-critical solution for the entire flow. 

It is also important to notice that although the application of specific energy-height diagrams is 
quite useful in the case of the flow over the bump, special caution should be taken in interpreting 
the diagram. As we saw in this problem the hydraulic jump does not conserve the total energy 
(but in fact dissipates a lot). The conserved identity is the linear momentum. Thus a good 
approach would be to find the point on the super-critical branch before the jump and find a 
corresponding point on the sub-critical branch with an equal value of momentum and see where 
this new point sits on the energy diagram (as shown in Figure 13). It is noticeable that the 
jump will lead to a considerable drop of the energy head due to viscous dissipation involved in 
the jump region. 
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Figure 13: (a) Blue curve showing h/hc as a function of E/hc for constant flow rate. (b) Red 
curve showing h/hc as a function of M/h2 

c for constant flow rate. The flow starts at point 
1 on each curve and after the hydraulic jump transitions to point 2 for downstream of the 
jump. 
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