
    

  

 
 
 
 
 
 

   
 

  
 

  
 
 

 
 

 
  

 
 

 
 

  
 

2.25 Quiz 2 Fall 2013 

2.25 ADVANCED FLUID MECHANICS Fall 2013 

QUIZ 2
 

THURSDAY, November 14th,  7:00-9:00 P.M.
 

OPEN QUIZ WHEN TOLD AT 7:00 PM
 

THERE ARE TWO PROBLEMS
 
OF EQUAL WEIGHT
 

Please answer each question in DIFFERENT books
 

You may use the course textbook (Kundu or Panton), a binder containing your class notes, 
recitation problems and TWO pages of handwritten notes summarizing the key equations. 
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2.25 Quiz 2 Fall 2013 

Question 1: Electro-osmotic flow in a capillary tube 
Microfluidics concerns fluid flows whose characteristic length scale is on the order of 
micrometers. One commonly used method for driving flows in micro-devices is to use electro-
osmotic flow (EOF), which exploits the fact that the walls enclosing the flow typically possess an 
electric charge, and involves applying an electric field along a microfluidic channel. For this 
problem, the only thing you need to know about EOF is that, under typical conditions, it results 
in a uniform velocity profile. That is, the no-slip condition is not valid at the walls, and the fluid 
velocity resulting from EOF does not vary transverse to the flow direction. 

It is important, but not always straightforward, to be able to measure the EOF-driven flow rate in 
microchannels. One apparatus to do this is depicted in the figure above. A small, cylindrical 
“capillary tube” with diameter Dc and length Lc connects two wells. The wells and capillary tube 
are filled with an aqueous solution having density ρ and viscosity µ. An electric field pointing 
from right to left drives EOF in the same direction at a uniform velocity veo. The right well is 
open to the atmosphere and the left well is connected to a needle having diameter Dn and length 
Ln. The needle feeds into a microsyringe with a smaller diameter Dm, which is open to the 
atmosphere. Lm is the length of the microsyringe that is filled with fluid. The entire system is 
kept horizontal to eliminate the effects of gravity. 

As fluid accumulates in the left well, over time a pressure difference builds up between 
the two wells that drives fluid from left to right. This “back-flow” has an average velocity given 
by At the same time, fluid is driven upward into the needle and microsyringe, where the 
average velocities are  respectively. 

In the following, neglect the effects of surface tension (i.e. assume the meniscus at the 
air/liquid interface in the microsyringe is perfectly horizontal) and assume steady, fully 
developed, incompressible flow everywhere in the capillary tube. 

(a) [2 points] Show that the velocities in the capillary tube, needle, and microsyringe are 
related by 

(1)
 

(b) [3 points] Determine the velocity profile in the capillary tube at a point near the middle of 
the tube (far from either end), in terms of an unknown pressure gradient and Clearly 
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list your assumptions and boundary conditions. Sketch the velocity profile for two 
different magnitudes of the pressure gradient (you don’t need to specify the values – just 
one stronger, one weaker). 

(c) [2 points] Neglecting entrance effects at the junction between any two pieces of the 
device, show that 

(2)
 

The utility of this experimental setup is that it enables one to indirectly measure the electro-
osmotic velocity by directly measuring the average meniscus velocity and using 
mathematical manipulations of (1) and (2) to convert this result to veo. is relatively easy to 
measure by fixing a camera on the microsyringe and tracking the position of the meniscus over 
time.  

(d) [1 point] Show that the needle and microsyringe can be lumped together as a single tube 
with average fluid velocity and diameter Dm if we assume its effective length is 

(e) [3 points] Show that the electro-osmotic velocity is related to the average meniscus 
velocity and the average pressure-driven back-flow velocity by 

(3) 

(4) 

(f) [2 points] Determine the maximum pressure difference that the capillary can support, in 
terms of the electro-osmotic flow velocity veo. 

(g) [2 points] How does the meniscus height scale with time at short times? That is, find n in 
the expression Assume here that the situation is quasi-steady, i.e. that 
everything you have derived above for the steady case is still valid. There is no need to 
use the unsteady momentum or the unsteady Bernoulli equation. 
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Question 2: Flow of Paint in a ‘Bell Atomizer’ 

Motor &
 
Rotating Be
 

During modern car production, the application of paint is carried out robotically.  A computer-
controlled robot arm is programmed to uniformly apply paint to all of the internal and external 
surfaces with a minimum of “overspray”.  This requires a unique nozzle that can handle large 
volumes of paints of a range of viscosities without clogging or blocking. The dominant 
technology has become the 

Rotating 
Bell 

Motor 

Spray 
painted part 

rotary bell atomizer shown in the Figure below. 

Robot Arm 

“Bell Cup” 

Viscous liquid of viscosity µ, density ρ 
and surface tension σ is ejected through 
a hole (at the center of the axis of 
rotation and at a constant volumetric 
flow rate Q) onto a smooth conical 
surface or “bell” (with angle θ0 < 1) that 
is rapidly rotating at a constant angular 
velocity Ω . We describe the flow in a 
spherical polar coordinate system 
{r,θ ,φ} (see figure opposite).  

Centrifugal force holds the fluid film 
against the wall of the “bell” and drives 
the fluid radially outwards towards the exit lip at r = R. The fluid film thickness h(r) is always 
very thin compared to the effective radius of the cup ξ = r sinθ0 at each point throughout the 
device and forms a thin and very uniform coating by the time it reaches the exit of the applicator. 

We will represent the free surface height as h(r) and the radial velocity by the function vr (r,θ ) . 
You can neglect the density and viscosity of air as well as the effects of gravitational acceleration 
and pressure gradients in the film (these are both overwhelmed by the centripetal acceleration of 
the fluid in the rapidly spinning bell). 

a) [3 points]  This is a complicated problem with many possible control parameters for a plant 
operator, or robot path planner or paint formulator to vary. A common language is needed 
to prepare suitable applicator charts and design new bell applicators. This can best be done 
using the tools of dimensional analysis.  Identify the appropriate dimensionless groups that 
control the thickness hR  of the paint film at the exit of the applicator (r = R). Select both 
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the density and surface tension of the paint as two of your primary variables. 

b) [2 points] Write down the conservation of mass in spherical polar coordinates and show 
that a velocity vector v = [vr (r,θ ), vθ (r,θ ), Ωr sinθ0 ] consisting of a two-dimensional 
axisymmetric velocity profile in the film, combined with a constant angular velocity 
throughout the film (at each value of r) vφ = Ωr sinθ0 is able to satisfy the continuity 
equation. Make a scaling argument to determine if vθ  is small or large compared to vr  ? 

c) [4 points] Now consider the radial component of the conservation of momentum equation 
for the paint film on the rapidly-spinning conical applicator shown in the figure above.  
Because the layer is ‘thin’ (so that the value of θ  doesn't vary much), it can be argued that 
it is valid to simplify the angular dependence of the radial velocity component, so that
sinθ ≈ sinθ0  everywhere.  Show that the radial component of the equation of motion can 
be simplified to the following form for a very viscous thin film of paint: 

1 ∂2 vr ρΩ2r sin2 θ0 ≈ 0 (2.1)
r2 ∂θ 2 + 

µ 

Give three appropriate constraints that identify when this approximation is valid. 

d) [1 point] Give appropriate boundary conditions at the free surface between the paint and 
the air and at the rigid wall between the cup and the paint. 

[Hint: To do this, it is easiest to sit in the rapidly and steady rotating frame of the cup 
with angular velocity vφ r sinθ0 = Ω  ; you can then focus just on the radial 
(outwards) velocity towards the edge of the bell]. 

e) [2 points] Find an expression for the radial velocity profile in the fluid film. 
[Hint: you may find it useful to define a new coordinate as shown in the figure with 
y = r sin (θ0 −θ )  and also recall that the function sin x ≈ x + O(x3)  for x << 1. 

f)	 [2 points] Integrate your expression for the velocity field through each small annular slice 
of area dA = 2π (r sinθ0 )dy  to show that the constant volume flow rate Q of paint and the 
thickness h(r) of the paint film are related by the expression 

1/3 ⎛ 3µQ ⎞
h(r) = (2.2)

⎝⎜ 2πρΩ2r2 sin3θ0 ⎠
⎟ 

g) [1 point] In the laboratory reference frame, fluid streamlines and particle pathlines actually 
follow spiral trajectories as the paint flows outwards of the conical bell cup, because of the 
combined radial and azimuthal (i.e. rotational) flow components. Use the definition of a 
streamline to show that the expression for the spiral trajectory of a material point rs (φ) 
(such as a small bubble or particle) that is on the paint surface is given by:

drs −1/3 = Ars	 (2.3)
dφ 

and give an expression for the constant A. 
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