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2.25 ADVANCED FLUID MECHANICS Fall 2013 

FINAL
 

TUESDAY, December 17th,  9:00-12:00 P.M.
 

OPEN QUIZ WHEN TOLD AT 9:00 AM 


THERE ARE TWO LONG PROBLEMS
 
(worth 15 points and 20 points respectively)
 

Plus 5 “Conceptual Questions” (worth one point each) 


Please answer each long question in DIFFERENT books
 

ALSO: Please write your name on page 2 with Concept Questions
 
AND HAND THIS EXAM SCRIPT IN WITH THE BOOK
 

CONTAINING QUESTION 1
 

You may use the course textbook (Kundu or Panton), a binder containing your class notes, 
recitation problems and THREE pages of handwritten notes summarizing the key 

equations. 
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Family Name: First Name: 

Concept Question [5 Points]: 
1.	 A single spherical bacterium moving in water vs. a baseball moving in air which one has 

a higher CD? 

2.	 For each flow description on the left, choose the form of mass conservation you would 
use for that situation on the right. 
a. Steady/compressible flow of air 	 1. 
b. Arbitrary flow (Lagrangian perspective) 2. 
c. Unsteady/incompressible flow of viscous oil 3. 

d. Arbitrary flow (Eulerian perspective) 4. 
3. How would the three phase contact angle (between liquid/air/solid) ( ) change with 

respect to the Bond number for an ideally smooth surface?

 a. It will decrease b. It will increase c. It remains constant 
4. Write down in one line the scaling for the pressure in a lubrication problem in a confined 

geometry with characteristic length (L) and height (h) viscosity ( µ ) and velocity (V ) 
(assumptions )? 

5.	 A soccer player is trying to score a goal, but the players from the other team are blocking 
his way. So, he decides to curve the ball. What direction of circulation will make the ball 
go into the goal? 
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1. Savart Liquid Sheets [15 Points] 
Atomization processes in rocket engines and electronics cooling applications frequently use an 
Impinging Jet geometry as shown in Figure 1 below. Viscous liquid of viscosity µ, density ρ 
and surface tension σ is fired vertically downwards out of a nozzle at a constant velocity u j  as a 
cylindrical jet of radius rj and hits a small rigid circular disk of radius r1 that is aligned to be 
orthogonal to the jet. The impact leads to a rapid deflection of the jet and rearrangement of the 
fluid so that a thin circular sheet of fluid of thickness h < rj flows outwards radially. 

A few important experimental observations that can be made are: 
i) for small jet diameters and high speeds the sheet remains almost perfectly horizontal and 

doesn't sag under gravity.
ii) the circular disk of fluid flows outwards to a critical radial point R and then abruptly 

stops and forms a ‘rim’ that subsequently breaks into small drops that fall vertically 
downwards under gravity.

iii) experimental measurements show that small seed particles or bubbles move outwards 
along this liquid sheet with a constant velocity U (so that their position varies as 
rp = Ut for r1 ≤ r ≤ R ) 

We describe the flow in a cylindrical polar coordinate system r,θ , z . We will consider two cases;
firstly one in which fluid viscosity is negligible and then one in which viscous effects near the 
disk do play a modifying role. 

a) [2 points] We seek to understand how the sheet radius R varies with the incoming 
momentum of the jet and the size of the disk r1 . Using a suitable dimensionless analysis 
and selecting the surface tension as the relevant fluid property, identify the key groups that 
control the size of the fluid sheet. 
• Based on your analysis, give two suitable constraints that would enable you to tell people 
when the following conditions hold: 
i) gravitational effects on the circular sheet are negligible so that sagging doesn't occur 
ii) viscous effects in the film as it first flows radially outwards over the disk are negligible 

b) [2 points] Show that the thickness of the fluid film flowing radially outwards is h1 = rj 2r1 

. Give an expression for the steady thrust force (including sign) that acts on the solid disk. 

c)  [2 points] In this part we neglect any effects of viscosity: 
• Given the experimental observation that the radial velocity is constant in the outward flowing 
film (until it reaches the rim) find an expression for the thickness of the fluid film h(r) and then 
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by considering a radial momentum balance find an expression for the rim radius R. Arrange your 
results into a dimensionless form; i.e. R rj = ?? 

• Describe in words what forces (or stresses) physically balance each other at this point? 

d) [2 points] When the fluid viscosity is small, but not completely negligible, a viscous 
boundary layer forms near the disk and grows as the fluid flows radially outwards.  Give an 

appropriate expression for the thickness of the 
boundary layer at the edge of the disk (where r → r1 ). 
To express this in dimensionless form we compare this 
value to the thickness of the inviscid sheet and call the 
ratio β = δ h1 = ?? 
• If viscous effects are important, do you expect the 
fluid film to be thicker and moving slower, or thinner 

and moving faster than in the inviscid case? 

e) [2 points] Use the concept of a displacement thickness to give an expression for the 
momentum loss in the viscous sheet as it exits the disk radially at r = r1 . Then using the 
conservation laws find expressions for the average velocity and height of the sheet just as 
the fluid leaves the disk. Check that your result is in agreement with the conclusion you 
reached above in (d). 

f) [2 points] Beyond the edge of the disk (i.e. for radii r1 ≤ r ≤ R ) there is no rigid surface to 
provide additional shearing, and the thin but viscous fluid film quickly returns to a plug-
like profile in which U is constant throughout the fluid sheet. Use the results of your 
momentum balance from part (c) to evaluate an expression for the viscous stress τθθ  . 
Give a dimensionless condition for when viscous effects are small (but not totally 
negligible) in the sheet. 

g)	 [2 points] Use your expressions from parts (d) and (e) to construct a new expression for the 
radius of the sheet at which the radial outward flow stops; R r1 =  ?? 
(hint your result should reduce correctly to the case when fluid viscosity is totally negligible!) 

h) [1 point] Experiments show that beyond a critical flow rate the disk transitions to a time-
periodic ‘flapping mode’ (reminiscent of a flapping flag or a pulsating jellyfish). A linear 
stability analysis (like the one described in the last class for a fluid jet) gives the following 
critical condition for the critical wavelength λ  of the instability: 

λcrit = 10π σ (where ρa  is the density of the air surrounding the fluid sheet)
U2ρa

Assuming that the sheet starts flapping when it extends radially outwards to be big enough 
to fit in exactly one flapping wavelength (i.e. so the sheet radius grows to be R →λcrit ), 
combine the expression above with your expression for the radius of a viscous sheet to give 
a dimensionless expression for the critical Weber number Wecrit at onset of the flapping 
instability. 
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2. Flow Around an Oar [20 points] 
To study the flow around a rowing oar, we consider a simpler but related two-dimensional 
problem. The problem involves a vertical thin plate, height 2a and negligible thickness, moving 
in an  unbounded fluid with horizontal velocity U∞ perpendicular to its long axis. The fluid 
density is ρ and the kinematic viscosity is ν. 
Throughout the problem, you may neglect all body forces. 

Figure 1: Potential flow over an oar of length 2a and negligible thickness oriented perpendicular to 
the free-stream flow direction. This figure is shown in the reference frame of the plate. Roman 
numerals indicate 1st-4th quadrants. 

Part I: Potential flow 
Initially, we assume that the flow has no separation around the plate and that potential flow 
theory is valid. The complex potential for this flow (in the reference frame of the plate) is 
known to be 

(1) 

where z = x + iy, β is a positive constant ( ) and 2a is the height of the plate. 
(a) [1 point] Use basic dimensional arguments to determine the value of β. 
(b) [1 point] Draw 5 representative streamlines and 5 lines of constant velocity potential 

around the plate. 
(c) [3 points] It can be shown that the complex velocity is given by 

(2) 

Use this definition to determine the y-direction velocity on the surface of the plate (x = 0, 
) and the x-direction velocity on the centerline (y = 0). Carefully note the sign of 

these velocities! Use physical arguments to determine the sign of the x- and y-
components of velocity (in the reference frame of the plate) in each quadrant (I-IV). 
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(d) [2 points] Determine the circulation (sign and magnitude, assuming positive circulation is 
counter-clockwise) around (i) the top half of the plate (i.e., the portion for which y > 0) 
and (ii) the entire plate. Clearly indicate the contours used in computing the circulation. 

Figure 2: Vortex pair left in the fluid after sudden removal of the plate. This figure is in the 
laboratory reference frame (the bulk fluid is stationary). 

Part II: Vortex propagation 
Now consider the situation when the oar is suddenly removed from the fluid. The resulting flow 
can be described as a pair of vortices a vertical distance H apart, moving with a forward speed V. 
The fluid outside of the vortices is irrotational. The vorticity distribution within each vortex is 
assumed to be uniform over a radial distance R from the center. Assume 

(e) [2 points] Neglecting any flows induced by the removal of the oar, what is the strength 
(i.e. the magnitude of circulation) of each vortex? Justify your answer, stating any 
necessary assumptions. What is the magnitude of the vorticity in each of the vortices? 

(f) [2 points] Determine (i) the tangential velocity and (ii) the pressure at the “edge” of the 
bottom vortex, at r = R (where r is the distance outward from the center – see Figure 2), 
in terms of the circulation found in part (e). 

(g) [1 point] Assuming potential flow, calculate the propagation speed V of the vortex pair (it 
should depend on U∞). 

Part III: Vorticity diffusion 
In reality, viscous stresses will diffuse the vorticity outward. Let us focus our attention on the 
flow field around one of the vortices. Initially, the vortex resembles an ideal vortex (R → 0). As 
time passes, the flow resembles solid-body rotation near the center and an ideal vortex far from 
the center. 

(h) [4 points] Derive the governing equations, initial condition, and boundary conditions for 
this unsteady process. Use the similarity transformation below to show that the 
governing equation reduces to 
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(3) 

subject to appropriate boundary conditions. Here is a dimensionless 

velocity and is a dimensionless similarity variable. Solve equation (3) and thus 
determine the velocity profile around one of the vortices. You may find the following 
identity helpful: if 

(i) [1 point] Estimate a characteristic width (in the y direction) of the vorticity distribution.  
It should depend on time. 

(j) [3 points] Estimate the time required for the vorticity distributions associated with each 
vortex to overlap. Use your result to estimate the distance traveled by the vortices before 
they overlap. What dimensionless parameter appears? Explain why this answer makes 
sense. 
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