
 

 

 

 

 

 

 

 

2.25 Fall 2004 Final Examination Solutions 

3 cD Mg
V
0 = R + (5) 

4 c  V AL 0 0 0 

where A0 is the exit area of a jet. Equation (5) reduces to a quadratic equation for V0, which can be 

solved straightforwardly. Putting the equation in the form (5) is useful since it shows at a glance 

that the torque due to aerodynamic drag becomes negligible in the limit 

3 c MgD 
<< R (6) 

4 c  V AL 0 0 0 

PART D 

The power required for hovering flight is the torque exerted on the two rotor blades —Eq. 

(4)—multiplied by O . 

NOTE: 

The above solution accounts for the dynamic effects of the jet exit velocity but neglects the effects 

of the inflow into the jet engines. This is a reasonable approximation: the hot exhaust gases are 

much less dense than the cool inlet air. Mass conservation implies that, with inlet and exit areas of 

the same order of magnitude, both the velocity and the momentum flux will be much higher at the 

exit than in the cool gas at the inlet. 

Problem 2: Lubricated Pipelining (Gareth McKinley) 

Model the fluid motion as flow in a 

cylindrical pipe of radius R with a core of 

thickness R1 consisting of viscous liquid 

oil with viscosity µ1 surrounded by a shell 

of water or other low viscosity fluid) of 

thickness 8 = R - R1 that is density 

matched (so that P1 = P2 = P ) with 

viscosity µ2 < µ1 . The interfacial tension between the two liquids is denoted (. The average 
2velocity of the oil through the pipe is denoted v = Q 7 R1o o 

a) Dimensional Analysis:

 P L = f ( , v , R1, µ1, µ2, R, ) (1)
o

Hence n = 8; r = 3; (n – r) = 5 Pi groups. Note that only (any) two of the length scales can enter 

as they are constrained by R1 = R - 8 . Gravity does not enter since there is no density contrast 

to drive density waves at interface ( lP = P1 - P2 = 0 ). Pick as primary variables the average oil 
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2velocity v = Qo 7 R1 (flow), core radius R1  (geometry) and density p . Obtain following Pio 

groups:

� µ1 µ2 R  �
=  , , , (2) 2	    v R1  v R1 R1  v  o o o 

R1 

 P / L

 v 
2( o 
R1) 

where the dimensionless groups may be recognized as, respectively, a friction factor, Reynolds 

numbers for the inner and outer fluids, a geometric ratio and the Weber number (inertia/ 

capillarity) We = pv ( . Alternatively you may have picked the inner fluid viscosity as the
o 

2
R1 

third primary variable (characterizing the flow), in which case you obtain: 

MP / L 
= ¢

( Pv R1 µ2 R ( )
o (3), , ,  2  

µ1vo 
R1  µ1 µ1 R1 µ1vo  

Where the last group is inverse of capillary number. Note that Ca = We Re . In general, the way 

this problem would be written “by inspection” would be in terms of a friction factor as a 

function of Reynolds number and other characteristic ratios: 

f =  (Re1, µ2 R ,We )	 (4)µ1 , R1 

Under flowing conditions, surface tension is the stabilizing force which resists the formation of 

curved interfaces (i.e. this would lead to extra interfacial area which is energetically 

unfavorable). Hence we require 

2
We =  v R1  << 1	 (5)

o 

This is actually not easy to achieve (for water/oil with 
-3

( " 30 X 10 N / m  and R1 " 1m  we would require v !  5.5mm/s).
o 

So typical lubricated pipelining operations do tolerate interfacial 

waves – provided they do not “break” (i.e. form crests that overturn 

and would thus emulsify the oil). 

http://www.aem.umn.edu/research/pipeline/horizontalindex.html
 

b)	 The appropriate boundary condition for the shear stress on the interface r = R1 assuming the 

interface is cylindrical can be written.

 v  v 
z z

  =  +
 or µ1 (6)= µ2rz rz r= R

1
r= R

1   r
r= R

1

 r
r= R

1 
+ 

!
The capillary pressure increase across the interface gives p1(z) = p2(z) + . This increase is 

R1 

negligible if the capillary pressure correction is small compared to the hydrostatic change from top 
2to bottom that we are also neglecting; i.e. ( R1 << pg(2R1) or ( (2pgR1 ) << 1 . Even if this term 

dp2 dp1 MP 
is included, it does not change the conclusion that .= = _ 

dz dz L 

3
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T 
c) Assuming that the steady-state velocity field is v = [0,0, v (r)D r and substituting into the z z  

z-component of Navier-Stokes equations gives 

dp µ1 d ( dv
z )

0 = - r  	 0 � r � R1dz 
+ 
r dr  dr  

(7a,b)
dp µ2 d ( dv )z

0 = - + r � r � R  	 R1dz r dr  dr  

Using these boundary conditions together with the condition that there is a finite interfacial 
1 +velocity given by vi = v (r = R1 ) = v (r = R1 )  gives the following expressions for the fully-

z z 

developed velocity field v (r) :z 

 P
 

L

R1

22 � r 
 P
 

L

R


1
 
+
 
1
 

4µ2

22 � R1 
(1) 

v =
 z 
4µ1

 for 0  r  R1 (8a)
 P
 

L

R1

22 � r=
 
1
 

4µ1
+ vi

 
  

 P
 

L

 
 

 
  
R
 22  r 

1(2)  
 
 in the shell from R1  r   R.  (8b)=
v 

z 
4µ2

The value of the velocity at the interface is given by: 

1 ( �P X(2) (1) 2 R2 - R1 ]	 (9)v	 (r = R1) = v (r = R1) = vi =   z z   4µ2  L  

 =  2R  P L (w	 ) 

The shear stress is negative and increases 
R

1 R

 0 

vi 

wateroil

linearly in magnitude across the entire r 

pipe (independent of viscosity or if flow 

is laminar or turbulent!); 

r dp r ( MP )T	 (r) = = _   rz 
2 dz 2  L  

The velocity field is continuous but 

R
changes slope by a factor of (µ1 µ2 )  atR 

1 

the core/shell boundary r = R1 . 

d)	 The flow in the pipeline is typically started impulsively by imposing a sudden increase in the 

pressure gradient along the pipe, 
  

2
 2 2

and the flow takes a period of time
 
to become fully developed. The
 

water 
center of the pipe moves as a 

Plug flow 

near middle
‘plug’ until viscous effects diffuse r oil 

in from the no-slip boundary.
2z 	 t  R1t

1 t
2 3  1  1
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Engineering estimates of the total time taken for the flow field in each domain to reach steady 

state are thus:

2 2 2 2  (R  R1) R1  R1 (10) 2  =  1  =
 2 µ2  1 µ1 

typically µ2 << µ1  whereas 8 , R1  might be only a factor of two or three different so the first 

2
R > µ1 2 

 
 

inequality dominates. The cross-over for these inequalities comes when 8 2 µ1 . 

e) The volume flow rate of each component is given by: 

 

 
 

 R1 

 R1 

 
 

R
1 
  P
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 R1 
 
 

 
  

R
1 

0 

r r  
   
   
   

(1) 22  rR1 

22  R12 rvQo dr R
 dr+
=
 =
z 
L
2
 µ1 µ2 

 
  
 P
  P
 
  


 
  


  
   

2 22  R1 

4
R
 (11)
+
=


L
 L
4µ2 8µ1

 
  P
 
  


2 
=  R1 

4 
vi +

L
8µ1

The last line in eq.(11) shows that the oil flow rate consists of the usual Poiseuille result (second
 

term) PLUS an additional contribution from the core with a finite interfacial velocity.
 

The water flow rate is:
 

 
  
  

 P
 

L

 
 

 
  
R
 22  R1   


2R (2)
Qw =
 
 2 rv dr =
 (12)


z
R
1 8µ2

 Using these results, the total power dissipated by the pumping operation per unit length is: 

2 
!

" !P % ( " !P % * 1 2 2 1 -
2 2 4

WL = ' (Qo + Qw ) = (R2 ) R1
2 ) + R1 (R2 ) R1 ) + R1 .# L & 8 # L & , µ2 µ2 µ1 / 

f) Differentiating the expression for Q  with respect to the core radius R1  gives:o

 Qo  
  
 
+


 


8µ1

 
  

 P
 

L

 
  


 
  

 P
 

L

 
  

 
 
2R
2 3
 ( 3 ) 4R1 (13)
0 =
 R1 4R1 =


 R1 4µ2

assuming the viscosities µ1, µ2  and density p are all held constant and that there is a fixed value 

of the imposed pressure gradient MP L . Solving gives: 

R1 * = 
R 

2 - µ2 µ1[ ]
1/2 (14)
 

for the optimal value of the core radius that maximizes the volume flow rate of oil through the 
* pipe. In the limit µ2 µ1 << 1  this value approaches R1 " R 2 . A smaller core radius (2nd term 

in eq. 11) cuts down on the amount of oil transported; a larger core means a smaller outer shell 

and an increase in the dissipation within the water phase. 
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Optional Extra Credit: (more detail provided than needed) 

g) In the limit that the outer layer of fluid becomes very thin and of very low (but still non-
2 2

zero!) viscosity ( µ2 << µ1) then we can approximate R1 = (R - o )2 
" R - 2Ro  and 

equation (9) for the interface velocity becomes 

vi =
 


µ2 

 
 
 


R
 

2

 
  

 P
 

L

 
  

 
 
 

=


 

 

w (15)
 

µ2

where the term in { } can be recognized from the momentum equation 

(or from a simple control volume force balance of the form 
2

T (27 RL) = MP(7 R ) ) as the wall shear stress T . The type of 
w w 

equation vslip = fT
w in eq.(15) is known as the Navier slip law . The 

slip coefficient is thus f = � µ2 . The magnitude of the slip coefficient 

thus depends on the rate at which these two parameters go to zero. 

Alternately: note that when the gap is very small then the flow in the 
0 

vi 

water 

oil 

R
1 R 

outer (water) phase becomes almost a Couette flow. To see this 

linearize equation 8b using a new variable that starts at the wall ( y = R - r ) to get r 2 
" R2 

- 2Ry 

and thus 

1 ( MP )
v
(2)
(y) "  2Ry  z 

4µ2  L  

dv dv R ( MP )z z =which again looks like a Couette flow introduced in class with T = µ2 = -µ2   dr dy 2  L  
and a maximum velocity at the edge of the Couette ‘shell’ layer (i.e. at position y = ! ) given by 

R ( MP ) �
v
(2)
(y = � ) " T � = z w 

2µ2  L  µ2 

6
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