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2.25 Advanced Fluid Mechanics 

Problem 5.13 
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin 
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Two large compartments are separated by a wall in which there is a small nozzle, or hole, of radius R. The 
pressure p1 in the left-hand compartment far from the nozzle is greater than the pressure p2 in the right-hand 
compartment, and a steady volume flow Q takes place from (1) to (2). 

The flow through the nozzle is an incompressible, high Reynolds number flow, typical of the ones rather 
loosely termed “inviscid”. However, as in all such flows, viscous forces are responsible for the phenomenon 
of flow separation which gives rise to a profound difference between the inflow and outflow regions of the 
nozzle flow field. 

In compartment (1), on the inflow side, the flow is directed approximately radially inward toward the nozzle 
entrance until one gets close to the nozzle, and is essentially inviscid. 

In compartment (2), however, the flow separates from the boundaries and emerges from the nozzle as a 
horizontal jet. 

Inside compartment (2) viscous forces slow the jet and also cause it to become turbulent and to mix with the 
surrounding fluid, some of which is dragged along with the jet as the latter penetrates into the compartment 
and gradually slows down. The process whereby the jet drags some of the ambient fluid along with it is called 
“entrainment”. and gives rise in compartment (2) to a secondary bulk flow which is directed approximately 
radially inward toward the jet as sketched. The velocities associated with this secondary flow are relatively 
small, however, and the pressure in compartment (2) can be modeled as being approximately uniform. 

(a) Consider a disc-shaped portion of the wall extending a radial distance r from the nozzle centerline. 
Using a control volume whose left side is a hemisphere of radius r, show that as r/R → ∞, the  
x-component of external force required to hold this portion of the wall in place is given by 

2 Q2 

F = −(p1 − p2)  πr + ρ 
πR2 
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(b) Consider the integrals of (i) mass flux and (ii) x-direction momentum flux across a plane at station x 
to the right of the nozzle exit. Do these integrals grow, decrease, or remain constant as x increases? 
How do they compare with their values at the nozzle exit plane? 

Gravity is to be neglected in this problem. 
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Solution:
 

Apply Bernoulli from compartment (1) to (2)
 

1 1
 
p1 +   ρv2 = p + ρv2

2 1 2 2 2 

(a) If r is much larger than R, then we can say that 
v2 » v1, such that 

2 2(p1  p2) 
v2 =	 

−
(5.13a)

ρ 

As the fluid moves from First we make a table of the relevant parameters 

n̂ v vc (v · ̂ex) = v x Pressure 

(1) êr −vrêr 0 vr cos φ p1 

(2)	 jet êx v2êx 0 v2 p2 

wall êx 0 0 0 p2 

Apply conservation of momentum
	   d %%  

F · ̂e  
x = 

⎡  ⎣ ρ%v dV +
 

ρv(v v%c n dA 
dt%

−%) % · ˆ  · ̂ex

%CV CS 

⎤

 
2 − 2

1 2

 
+ =

 
 (− 2 

⎦
2 2 p πr p πr Fx ρ vr) (vr cos φ) 2πr sin φ dφ +  ρv2 πR

(1)	 
'

v

-v       
·n̂
' '

vx dA

π/

-v
 

2

 

' ' '
(2)

-v
 

'
F + (p − p )πr2 = −ρv 22πr2 

-v '
x 1 2 r 

 
cos φ sin  φ dφ +  ρv 2

2 φR2

0 

= −ρv 2
r πr2 + ρv 2 2 

2 πR

To find vr, apply mass conservation

d 
   
 ρ dV  +

 
ρ(v − %v%c) · n̂ dA = 0  

dt   
 CV CS  π/2

  ρ(−vr)2πr2 sin φdφ + ρv 2
2πR = 0  

0 

v2R
2 

−ρvrr 22  
� π + ρv2πR2 = 0  ⇒ vr = 2r2 
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Finally, substitute the above relation for vr into conservation of momentum  
v2R

2  2 

Fx = −(p1 − p2)πr2 − ρ πr2 + ρv2
2πR2 

2r2   
R2 

= −(p1 − p2)πr2 + ρv2
2πR2 1 − (5.13b)

4r2

As r/R → ∞  

Q2 

Fx = −(p1 − p2)πr2 + ρv2
2πR2 = −(p1 − p2)πr2 + ρ 

πR2 

If we substitute our previous relation for v2 [Eq. (5.13a)] into Eq. (5.13b)     
R 
 2 1 R 

 4

Fx = (p1 − p2)πr2 −1 + 2 − 
r 2 r

Note that we have applied conservation of momentum on the fluid, and as a result, this is the force of 
the wall on the fluid. The force of the fluid on the wall is equal and opposite Fx. 

p2 secondary flow 

(b) Consider a control volume of length x: 

the control volume increases. However, since the x-component of the the secondary flow velocity is 
small (if we choose the diameter of our control volume D to be large compared to diameter of the flow), 
the x-momentum flux is relatively constant with increasing x. Although the x-momentum is constant, 
it does diffuse radially and we must take a control volume with larger D as we increase x. 

Far away from the wall (x → ∞) we expect the fluid velocity to go to zero. If we applied Bernoulli’s 
equation from (1) a point far to the left of the wall to (2) a point far to the right of the wall, we would 
expect the pressures to be equal since the velocities are roughly zero. 

x 

2R 

v2 

vx 

D 

As x increases, the secondary flow into this control volume increases and thus, the mass flux through 

p1 

p 

p2 

p1 

1 
2 ρv2 

2 

x 

However, we cannot apply Bernoulli between these two points, because viscosity is important far from 
the wall and is the reason that fluid is entrained. Far to the right of the wall, the pressure does not 
increase to p1 and energy is “burned” by viscous dissipation. The is an example of how fluid will flow 
smoothly go down a pressure gradient (favorable pressure gradient), but not up a pressure gradient 
(adverse pressure gradient). 

D 

Problem Solution by Tony Yu, Fall 2006 
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