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Question 1

Solution:

The given horizontal velocity profile u(z,y) is given inside the boundary layer as

ué.az;:l;) — a(x) <y$) +b(z) <5(yx)>3’ 0<y<d)

a) Determine a(z) and b(z)

Firstly, substitute y = §(x) into the given velocity profile, in which u(x,é(x)) = U(x).

=  1=ua(z)+bx) (1)

And apply shear-free boundary condition at y = §(z), i.e.,

,u@ =0 = az)+3b(z)=0 (2)
dy
Therefore, both a(z) and b(z) are constant.
1
aw) =5 |be) =3 3)

b) Expression for U(L)
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Since inviscid assumption is valid in outer flow, apply the Bernoulli from z = 0 to x = L along the top
streamline.

1 1
Pa+ 5PU% + pgd = pa+ 5pU(L)* + pgd (L) (4)

= |U(L) = (UL +29(d = 3(L)) " (5)
¢) Determine (L)
Apply mass conservation between z = 0 and x = L.
6(L)
Ud = [ ulloy) dy (©)
0
(L) 3 1 3
Y Y
[ )<2 (5t5) 2 (6@))) Y @
5
= = U Q
8Uood
= 0L)= —— 9
()= 5y )
Using U(L) which was obtained in part b),
8Usod
5(L) = —— . (10)
5(U3 +29(d—4(L)))
d) Pressure distribution in vertical direction at © = L
Navier-Stokes equation in y-direction is
Ip Ip
__9r A 11
0==3,779 & 5,=" (11)
The boundary condition for this ODE is the atmospheric pressure at y = §(L). Then,
p(L,y) =pa + pg (6(L) — y) (12)

This is nothing but the hydrostatic force balance.
e) Horizontal force acting on the plate

Apply the momentum conservation principle for the control volume
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Momentum flows in the z-direction through planes A and B and through the y = 0 plane via shear stresses
acting on the plate. No shear stresses contribute to the z-component of the momentum flux on plane B. No
momentum is flowing through the free surface.

So the drag on the plate of the length L is equal to the momentum flux deficit in z-direction :

d 5(L) 5(L)
D = pU2d+pg/0 (d—vy) dy*p/o U(L,y)zdy*pg/o (0 —y) dy (13)
d?>  6(L)? 17
= 2 e — pU(L)?6(L) x — 14
pUd+pg<2 5 ) PU(L)"S(L) x o (14)
f) Shear stress for x > L
The velocity profile for region > L is following the given function. Shear stress becomes
ou 2U(x)
Tey = ,Ua |y:0 3 5($) (15)
We do not know how U(z) and §(x) evolve along the distance. To obtain this, use mass conservation
5 5
Q=Usd = §U(L)6(L) = §U(:L’)5(:L’) (16)
8 @
Ulx)=-—= 17
Plug this into shear stress.
2 8 Q 16 Q
2.8 _ 18
Tay 375 52 15o(x)? (18)
2 5 U)? 5 U)?
or Tay = 3X3g 0 5 0 (19)

Assume that over a very thin layer on the free surface at the edge of the boundary layer the flow is inviscid.
Then Bernoulli applies and
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1 1
3PUS + pgd = 5pU(2)* + pgd(x) (20)
Combining with Equation (17) gives

8pgQ
5U(x)

1 1
3PU% + pgd = 5pU(2)* + (21)

This is a cubic equation for U(z) in terms of known quantities. Thus, the shear stress 7, can be obtained
by using the solution of the above equation.

Problem Solution by J.Kim
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