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4.1.4 Vortex Shedding and Vortex Induced Vibrations 
Consider a steady flow Uo over a bluff body with diameter D. 

We would expect the average forces to be: 
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However, the measured oscillatory forces are: 

Average 

Average 

t

F

Fx
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•	 The measured drag Fx is found to oscillate about a non-zero mean value with 
frequency 2f . 

•	 The measured lift Fy is found to oscillate about a zero mean value with frequency 
f . 

•	 f = ω/2π is the frequency of vortex shedding or Strouhal frequency. 
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Reason: Flow separation leads to vortex shedding. The vortices are shed in a staggered 
array, within an unsteady non-symmetric wake called von Karman Street. The frequency 
of vortex shedding is the Strouhal frequency and is a function of Uo, D, and ν. 

i) Strouhal Number We define the (dimensionless) Strouhal number S ≡ 

Strouhal frequency ����
f D 

U0 
. 

The Strouhal number S has a regime dependence on the Re number S = S(Re). 

105 106 107

0.22

0.3
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For a cylinder:


Laminar flow S ∼ 0.22
•


Turbulent flow S ∼ 0.3
•


ii)	 Drag and Lift The drag and lift coefficients CD and CL are functions of the correlation 
length. 

For ‘∞’ correlation length: 

If the cylinder is fixed, CL ∼ O(1) comparable to CD. • 

•	 If the cylinder is free to move, as the Strouhal frequency fS approaches one of 
the cylinder’s natural frequencies fn, ‘lock-in’ occurs. Therefore, if one natural 
frequency is close to the Strouhal Frequency fn ∼ fS , we have large amplitude 
motions Vortex Induced Vibration (VIV).⇒ 
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4.2 Drag on a Very Streamlined Body 

UL 
ReL ≡ 

ν 

Cf ≡ 
D 

1 
2 ρU2 (Lb)����

S=wetted area 
one side of plate 

Cf = Cf (ReL , L/b) 

 Cf 

0.01 
Laminar 

105 
Re 

0.001 

Turbulent 

106 

= ν ∂u 
�

Unlike a bluff body, Cf is a strong function of ReL since D is proportional to ν 
�
τ 

∂y . 

See an example of Cf versus ReL for a flat plate in the figure below. 

Skin friction coefficient as a function of the Re for a flat plate 

•	 ReL depends on plate smoothness, ambient turbulence, . . . 

In general, Cf ’s are much smaller than CD’s (Cf /CD ∼ O(0.1) to O(0.01)). Therefore, • 
designing streamlined bodies allows minimal separation and smaller form drag at the 
expense of friction drag. 

• In general, for streamlined bodies CTotal Drag is a combination of CD (Re) and Cf (ReL ), 

1 

�	 �
and the total drag is D = 

2 ρU2 CD S + Cf Aw , where CD has a regime 
frontal area wetted area 

dependence on Re and Cf is a continuous function ReL . 
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4.3 Known Solutions of the Navier-Stokes Equations 

4.3.1 Boundary Value Problem 

Navier-Stokes’: • 

∂�v 1 1 
∂t 

+ (�v · �) �v = −
ρ
�p + ν� 2�v + 

ρ
f�

Conservation of mass: •


� · �v = 0


• Boundary conditions on solid boundaries “no-slip”: 

�v = U�

Equations very difficult to solve, analytic solution only for a few very special cases (usually 
when � v = 0. . . ) v · ��
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4.3.2 Steady Laminar Flow Between 2 Long Parallel Plates: Plane Couette Flow 

 y 

h 

z 

x 

U 

Steady, viscous, incompressible flow between two infinite plates. The flow is driven by a 
pressure gradient in x and/or motion of the upper plate with velocity U parallel to the 
x-axis. Neglect gravity. 

Assumptions Governing Equations Boundary Conditions 

i. Steady Flow: ∂ 
∂t = 0 

ii. (x, z) >> h: ∂�v 
∂x = ∂�v 

∂z = 0 

iii. Pressure: independent of z 

Continuity: ∂u 
∂x + ∂v 

∂y + ∂w 
∂z = 0 

NS: ∂�v 
∂t + �v · ��v = −1 

ρ �p + ν�2�v 

�v = (0, 0, 0) on y = 0 

�v = (0, 0, 0) on y = h 

Continuity 

∂u ∂v ∂w ∂v 
+ + = 0 = 0 v = v(x, z) v = 0 (1)

∂x ∂y ∂z
⇒ 

∂y 
⇒ ⇒

���� ����
BC: v(x,

↑
0,z)=0 

=0, from assumption ii 
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����

Momentum x 

∂u ∂u ∂u ∂u 1 ∂p 
� 

∂2u ∂2u ∂2u 
� 

+u + v + w = − + ν + + 
∂t ∂x ���� ∂y ∂z ρ ∂x ∂x2 ∂y2 ∂z2 

⇒
=0, (1)����

=0, 
����

ii 

���� ����
ii 

����
i =0, =0, ii =0, =0, ii 

∂2u 1 ∂p 
ν = (2)

∂y2 ρ ∂x 

Momentum y 

∂v 1 ∂p 
+� v 2 v


∂t
v · � 

=0

����
, 

= −
ρ ∂y 

+ ν� ����
(1) 

⇒

(1) =0, 

=0, i 

∂p ∂p dp
= 0 p = p(x) and = (3)

∂y 
⇒

∂x dx↑
assumption iii 

Momentum z 

∂w ∂w ∂u ∂w 1 ∂p 
� 

∂2w ∂2w ∂2w 
� 

+u + v + w = − +ν + + 
∂t ∂x ���� ∂y ∂z ρ ∂z ∂x2 ∂y2 ∂z2 

⇒
=0, (1)���� ����

ii 

���� ����
iii 

���� �
=0

��
, 
�
ii=0, i =0, =0, ii =0, =0, ii 

∂2w 
= 0 w = ay + b w = 0 (4)

∂y2 
⇒ ⇒

↑
w(x,0,z)=0 
w(x,h,z)=0 

From Equations (1), (4) 

∂u du 
�v = (u, 0, 0). Also u = u(y) and = (5)⇒

∂y dy↑
assumption ii 

From Equations (2), (3, and (5) 

d2u 1 d2p 1 
� 

dp 
� 

2 1 
� 

dp 
�

y 
dy2 

= 
ρν dx2 

⇒ u = −
2µ 

−
dx 

y +C1y+C2 ⇒ u = − (h − y)y + U 
2µ dx h 

µ=
↑
ρν u(x,0

↑
,z)=0


w(x,h,z)=U
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Special cases for Couette flow • 
1 dp dp Px−Px+Lu(y) = 
2µ (h − y)y(−

dx ) + U 
h
y , where (−

dx ) = 
L 

dp dpI. U = 0, 
� − 

� 
> 0 II. U = 0� , 

� − 
� 

= 0
dx dx 

Velocity•
u(y) = 1 dp ) u(y) = U y 

2µ (h − y)y(−
dx h 

Max velocity•
dpumax = u(h/2) = 

8
h
µ 

2 
(−

dx ) umax = U 

Volume flow rate • 

h3 dpQ = 
�

0 
h 
u(y)dy = 

8µ (−dx ) Q = h U
2 

Average velocity•
Q h2 dpū = 
h = 

6µ (−dx ) ū = U 
2 

Viscous stress on bottom plate (skin friction)•
du 

��� Uτw = µ du 
��� = h dp � 

> 0 τw = µ 
dy = µ 

hdy 2 

� − 
dx 

y=0 y=0 
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0,0)(,0 >>−> G
dx

dp
U

wτ

Uhu =)(

h

U

0,0)(,0 <<−> G
dx

dp
U

flowback

Uhu =)( U

wτ

III. U �= 0, 
� − dp 

dx 

� �= 0 

� − dp 
dx 

� 
> 0 

� − dp 
dx 

� 
< 0 

•Viscous stress on bottom plate (skin friction) 

τw = h 
2 

� − dp 
dx 

� 
+ µ U 

h 

τw 
< 
= 
>
0 when (− 

dp 
dx

) 
< 
= 
> 
− 

2µU 
h2 

, in which case the flow is 

� 
attached 
insipient 
separated 
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0,0)(,0 >>−> G
dx

dp
U

Uhu =)(

h

U

0,0)(,0 <<−> G
dx

dp
U 01,0)(,0 =⇒−=<−> wG

dx

dp
U τ

Uhu =)( U UUhu =)(

flowback

dpFor the general case of U = 0 and � � − 
� 

= 0, �
dx 

τw = 
h� − 

dp � 
+ µ

U 
2 dx h 

We define a Dimensionless Pressure Gradient G 

G ≡ 
h2 � − 

dp � 

2µU dx 

such that 

G > 0 denotes a favorable pressure gradient • 

G < 0 denotes an adverse pressure gradient • 

G = −1 denotes an incipient flow • 

G < −1 denotes a separated or back-flow • 

Lessons learned in § 4.3.2: 

1. Reviewed how to simplify the Navier-Stokes equations. 

2. Obtained one solution to the Navier-Stokes equations. 

3. Realized that once the Navier-Stokes are solved we know 
everything. 

In the next paragraph we are going to study one more solution to the Navier-Stokes equa­
tion, in polar coordinates. 
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4.3.3 Steady Laminar Flow in a Pipe: Poiseuille Flow 

 

r = a 

Vx(r) 

Steady, laminar pipe flow. KBC: vx(a) = 0 (no slip) and 
2 2 dvx(r = y2 + z , �v = (vx, vr, vθ)) dr (0) = 0 (symmetry). 

Assumptions Governing Equations Boundary Conditions 

i. Steady Flow: ∂ 
∂t = 0 

ii. (x, z) >> h: ∂�v 
∂x = ∂�v 

∂θ = 0 

⇒ �v = �v(r) 

iii. Pressure: independent of θ 

Continuity: 1 
r 

∂rvr 
∂r + 1 

r 
∂vθ 
∂θ + ∂vx 

∂x = 0 

NS: In polar coordinates (see SAH pp.74) 

vx(r = a) = 0 no-slip 

dvx 
dr |r=0 = 0 symmetry 

Following a procedure similar to that for plane Couette flow (left as an exercise) we can 
show that 

1 dp 
�

1 d 
� 

dvx 
�� 

vr = vθ = 0, vx = vx(r), p = p(x), and = ν r 
ρ dx r dr dr 

2r component of �
in cylindrical coordinates 

After applying the boundary conditions we find: 

1 
� 

dp 2 vx(r) = 
4µ 

−
dx 

� �
a − r 2

� 

Therefore the volume flow rate is given by

2π a 

Q = 
� 

dθ 
� 

rdrvx(r) = 
π

a 4
� − 

dp � 

8µ dx0 0 

and the skin friction evaluates to 
∂vr ∂vx ∂vx a dp

τw = τx(−r) = −τxy = −µ ( 
∂x 

+ 
∂r 

) 

����
r=a 

= −µ 
∂r 

����
r=a 

⇒ τw =
2 

� − 
dx 

� 
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4.4 Boundary Layer Growth Over an Infinite Flat Plate for 
Unsteady Flow 

Boundary layer thickness is related to the area where the viscosity and vorticity effects are 
diffused. 

For a flow over an infinite flat plate, the boundary layer thickness increases unless it is 
constrained in the y direction and/or by time (unsteady flow). 

1. Steady flow, constrained in y 

For a steady flow past a flat plate, the boundary layer thickness increases with x. 
If the flow is constrained in y, eventually the viscous effects are diffused along the 
entire cross section and the flow becomes invariant in the streamwise direction. 

In paragraphs 4.3.2 and 4.3.3, we studied two cases of steady laminar viscous flows, 
where the viscous effects had diffused along the entire cross section. 

� 
Couette 

� � 
h 

�
Steady flow, we assumed that viscous effects diffused through entire .

Poiseuille a 
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2. Unsteady flow, unconstrained in y


Consider the simplest example of an infinite plate in unsteady motion. 

 

z 

y 

x 

U(t) 

Assumptions �p = 0, ∂�v = ∂�v = 0 �v = �v (y, t)
∂x ∂z ⇒ 

Can show v = w = 0 and u = u(y, t). 

Finally, from u momentum (Navier-Stokes in x) we obtain 

⎛ ⎞ 

∂u ∂u ∂u ∂u 1 ∂p ∂2u ∂2u ∂2u 
∂t 

+ u 
∂x

+ v
∂y 

+ w
∂z 

= −
ρ ∂x

+ν ⎜
∂x2 

+ 
∂y2 

+ 
∂z2 

⎟⎝ ⎠ ⇒
=0����

=0 

���� � ��
=0 

� ����
=0 

����
=0 

����
=0 

∂u ∂2u 
= ν ‘ momentum ’ diffusion equation (6)

∂t ∂y2 
velocity 
(heat) 

Equation (6) is: 

� first order PDE in time requires 1 Initial Condition → 

� second order PDE in y requires 2 Boundary Conditions → 

- u(y, t) = U(t) at y = 0, for t > 0 
- u(y, t) 0 as y →∞
→


From Equation (6), we observe that the flow over a moving flat plate is due to viscous 
dissipation only. 
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4.5.1 Sinusoidally Oscillating Plate 

i.	 Evaluation of the Velocity Profile for Stokes Boundary Layer


The flow over an oscillating flat plate is referred to as ‘Stokes Boundary Layer’.


Recall that eiα = cos α + i sin α where α is real. 

Assume that the plate is oscillating with U(t) = Uo cos ωt = Real {Uoe
iωt}. From linear 

theory, it is known that the fluid velocity must have the form 

u (y, t) = Real 
�
f (y) e iωt

� 
,	 (7) 

where f(y) is the unknown complex (magnitude & phase) amplitude of oscillation. 

To obtain an expression for f(y), simply substitute (7) in (6). This leads to: 

d2f 
iωf = ν	 (8)

dy2 

Equation (8) is a 2nd order ODE for f(y). The general solution is 

(1+i) 
�√

ω/2ν 
� 
y 
+ C2e

−(1+i) 
�√

ω/2ν 
� 
y

f (y) = C1e	 (9) 

The velocity profile is obtained from Equations (7), (9) after we apply the Boundary 
Conditions. 

u(y, t) must be bounded as y →∞⇔ C1 = 0 
� 

u (y, t) = Uo(e
−y
√

2
ω
ν ) cos 

� − y 

� 
ω 

+ ωt
� 

u(y = 0, t) = U(t) f(y = 0) = Uo C2 = Uo 2ν⇔	 ⇔ 

Stokes Boundary Layer 
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δδ ≡e/1

11−

λ 
= 

2π
δ

ii. Some Calculations for the Stokes Boundary Layer


Once the velocity profile is evaluated, we know everything about the flow.


Stokes Boundary Layer. Velocity ratio u
U
(y

o 

) as a function of the distance from the plate y. 

Observe: 

2ν )

Uo 2ν


u(y, t)
= (e−y

√ 
ω 

cos 
� − y 

� 
ω 

+ ωt
� 

(10) 
Exponentially decaying 

� �� � � �� �
envelope Oscillating component 

SBL thickness 

The ratio 
U
u 
o 

is composed of an exponentially decaying part thickness of SBL decays →
exponentially with y. We define various parameters that can be used as measures of 
the SBL thickness: 

We define δ1/e as the distance y from the plate where 
u(δ

U
1

o

/e) 
= 1 

e . Substituting• �
2νinto (10), we find that δ ≡ δ1/e = 
ω 

�
2ν u(λ)The oscillating component has wave length λ = 2π
ω = 2πδ. At λ, 

Uo 
= 0.002. • ∼

We define δ1% as the distance y from the plate, where u(δ1%) = 1%. Substituting • 
Uo 

into (10), we find that δ1% = − ln(u(δ1%) )
�

2ν = 4.6δ.
Uo ω 

∼
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Numerical examples: 

For oscillating plate in water (ν = 10−6m2/s= 1mm2/s) we have 

δ1% 
4.6 √

T ∼= = 2.6
� 

T
in sec

���� √
π ����

in mm 

T = 2π 
ω δ1% 

1s 3mm 

10s ≤1cm 

Excursion length and SBL 

The plate undergoes a motion of amplitude A. 

˙ Uo
X = A sin(ωt) U = X = Aω cos(ωt) ω = ⇒ ���� ⇒ 

A 
Uo 

Comparing the SBL thickness ∼ δ with A, we find 

δ 
�

ν/ω 
�

νA/Uo 
� 

ν 1 
= = 

A 
∼ 

A A UoA 
∼ �

ReA
↑
Uoω= 
A 

Skin friction 

The skin friction on the plate is given by 

τw = µ 
∂u

���� = . . . = µUo 

� 
ω � 

sin ωt − cos ωt
� 

∂y y=0 2ν 

The maximum skin friction on the wall is 
�

ω |τw|max = µUo 
ν 

and occurs at ωt = 3
4 
π , 7

4 
π , · · · 
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4.5.2 Impulsively Started Plate


Recall Equation (6) that describes the the flow u(y, t) over an infinite flat plate undergoing 
unsteady motion. 

∂u ∂2u 
= ν 

∂t ∂y2 

For an impulsively started plate, the Boundary Conditions are: 

u(o, t) = Uo 

� 

for t > 0, i.e. u(y, 0) = 0 
u(∞, t) = 0 

Notice that the problem stated by Equation (6) with the above Boundary Conditions has no 
explicit time scale. In this case it is standard procedure to (a) use Dimensional Analysis 
to find the similarity parameters of the problem, and (b) look for solution in terms of the 
similarity parameters: 

u 
u = f (Uo, y, t, ν) ⇒

U

u 

o 
= f

� 

2
√y

νt 

� ⇒ = f(η) Self similar solution 
Uo↑

DA � 
≡
��

η 
� 

similarity parameter 

The velocity profile is thus given by�: 

u 2 
�η

= erfc (η) = 1 − erf (η) = 1 − e−α2 
dα 

Complementary

error function


Uo � �� � √
π 

0 
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�	 Hints on obtaining the solution: 

η = 
2
√y

νt 

∂u =ν ∂
2 u 

∂ ∂η ∂ y ∂ ∂t ∂y2 d(u/Uo) d2(u/Uo) 
∂t = 

∂t ∂η = −
4t
√

νt ∂η −→ −η 
dη 

= 
dη2 

−→ . . . 

∂2 ∂2	

��
2nd 

= 
�

∂η �2 ∂2 1	 order ODE = 
∂y2 ∂y ∂η2 4νt ∂η2 

⎫
⎪⎪⎪⎪⎪⎬ 

⎪⎪⎪⎪⎪⎭ 

Boundary layer thickness 
In the same manner as for the SBL, we define various parameters that can be used to 
measure the boundary layer thickness: 

δ ≡ 2
√

νt.	 = 0.16. •	 At y = δ −→ u
U
(δ

o 

) ∼


δ1% 
∼
= 1.82δ. • 

Excursion length and boundary layer thickness 
At time t, the plate has travelled a distance L = Uot t = 

U
L 
o 
. →

Comparing the boundary layer thickness ∼ δ with L, we find 

δ 
√

νt 
�

νL/Uo ν 1

L 
∼
 =
 =


L 
∼
�

ReL 
L L Uo

Skin friction 
The skin friction on the plate is given by 

∂u
��	��

Uo
τw = µ 

∂y y=0 

= . . . = −µ√
πνt 
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