MIT OpenCourseWare
http://ocw.mit.edu

2.161 Signal Processing: Continuous and Discrete
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
DEPARTMENT OF MECHANICAL ENGINEERING
2.161 Signal Processing - Continuous and Discrete

Parallel Derivations of the Z and Laplace Transforms !

The following is a summary of the derivation of the Laplace and Z transforms from the continuous-

and discrete-time Fourier transforms:
The Laplace Transform

(1) We begin with causal f(¢) and find its Fourier
transform (Note that because f(t) is causal, the
integral has limits of 0 and oo):

F(iQ) = /0 T F)e

(2) We note that for some functions f(t) (for ex-
ample the unit step function), the Fourier integral
does not converge.

(3) We introduce a weighted function

w(t) = f(t)e™"

and note
lim w(t) = f(t)

o—0

—ot

The effect of the exponential weighting by e
is to allow convergence of the integral for a much
broader range of functions f(t).

(4) We take the Fourier transform of w(t)

/OOO (f(t)e_at> e % gt
= /O T (e H g

W(jQ) = F(jQlo) =

and define the complex variable s = ¢ + jQ so
that we can write

F(s) = F(jwlo) = /0 T F(t)e e

F(s) is the one-sided Laplace Transform. Note
that the Laplace variable s = o + () is expressed
in Cartesian form.
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The Z transform

(1) We sample f(t) at intervals AT to produce
f*(t). We take its Fourier transform (and use the
sifting property of 6(¢)) to produce

F*(jQ) _ Z fne—anAT
n=0

(2) We note that for some sequences f,, (for exam-
ple the unit step sequence), the summation does
not converge.

(3) We introduce a weighted sequence

{wn} = {far™"}

and note

ll_{q {wn} = {fn}

The effect of the exponential weighting by =" is
to allow convergence of the summation for a much
broader range of sequences f,.

n

(4) We take the Fourier transform of w,,

o

Z (fn,r—n) e—anAT

n=0

_ - QAT ™"
- o)

W*(jQ) = F*(jQlr) =

and define the complex variable z = re?®?A7T go
that we can write

F(z) = () = 3 fuz™
n=0

F(z) is the one-sided Z-transform. Note that z =
rel?AT is expressed in polar form.



The Laplace Transform (contd.)

(5) For a causal function f(t), the region of con-
vergence (ROC) includes the s-plane to the right
of all poles of F(j).

The Z transform (contd.)

(5) For a right-sided (causal) sequence {f,,} the
region of convergence (ROC) includes the z-plane
at a radius greater than all of the poles of F'(z).
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We note that the mapping between the s plane and the z plane is given by

Z=e€

and that the imaginary axis (s = j€) in the s-plane maps to the unit circle (z = /A7) in the

z-plane.

Furthermore we note that the mapping of the unit circle in the z-plane to the imaginary axis
in the s-plane is periodic with period 27, and that the mapping of the j€) axis to the unit circle

produces aliasing for || > 7/AT.

If we define a normalized discrete-time frequency that is independent of AT, that is

w = QAT
we can make the following comparisons:
The Laplace Transform (contd.)

(6) If the ROC includes the imaginary axis, the
FT of f(t) is F(jQ):

F(jQ) = F(s) |s=jo

(7) The convolution theorem states

@)= [ fgt - r)dr L5 PG

(8) For an LTI system with transfer function
H(s), the frequency response is

H(s)[s=jo = H(7Q)

if the ROC includes the imaginary axis.

w<T

The Z transform (contd.)

(6) If the ROC includes the unit circle, the DFT
of {fn},n=0,1,...,N — 1. is {F},} where

Fp = F(2) |amiom = F (™),
where wy, = 2rm/N for m =0,1,...,N — 1.

(7) The convolution theorem states

{fn} b2y {gn} = i Jmn—m é F(Z)G(Z)

m=—00

(8) For a discrete LSI system with transfer func-
tion H(z), the frequency response is
H(2) | = H(™)  |w| <7

if the ROC includes the unit circle.



The Laplace Transform (contd.)
(9) The transfer function

b 8™ + b1+ 4+ bis + by

H p—
(5) 8" + ap_18" 1+ ... +ais+ag

is derived from the ordinary differential equation

dny dnfly dy
anw + an_lW oot G]E —|—a0y
d"f daf
=bp,——+...+b1— +5b
Jm + + Ly +bof

(10) Poles of H(s) in the rh-plane indicate insta-
bility in the continuous-time system.

(11) The frequency response H(jw) may be in-
terpreted geometrically from the poles and zeros
of H(s) according to the following diagram:

j
s-plane
2

v

then H(jQ) = H(s)|,_;q, and

. H?i qi
|H(jQ)| = K=
i=17%
LH(Q) = > ¢i—> 0
i=1 i=1

(12) If f(t) <& F(s) then
flt— 1) <L e TE(s),

which is the delay property of the Laplace trans-
form.

The Z transform (contd.)

(9) The transfer function

—m —(m-1) -1
H(Z) _ bz + bp—1% + ...+ bz + b

Az 4+ ap_12= D + 4 arz7 4 ag

is derived from the difference equation

aoYi + a1Yg—1 + - + On—1Yk—(n—1) + AOYk—n
=bofx +bifr-1+ .+ bnfrm

(10) Poles of H(z) outside the unit circle indicate
instability in the discrete-time system.

(11) The frequency response H (jw), (w = Q/AT)
may be interpreted geometrically from the poles
and zeros of H(z) according to the following dia-
gram:
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then H(e/*) = H(z)|,_.j. and

i=1"i
. n n
LH(E) = Y ¢i—) b
=1 =1

(12) If {f,} <= F(z) then
{fom} <= 27 F(2),

which is the delay (shift) property of the Z trans-
form.





