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Parallel Derivations of the Z and Laplace Transforms 1 

The following is a summary of the derivation of the Laplace and Z transforms from the continuous-
and discrete-time Fourier transforms: 

The Laplace Transform 

(1) We begin with causal f(t) and find its Fourier 
transform (Note that because f(t) is causal, the 
integral has limits of 0 and ∞): 

� ∞
F (jΩ) = f(t)e−jΩtdt 

0 

(2) We note that for some functions f(t) (for ex­
ample the unit step function), the Fourier integral 
does not converge. 

(3) We introduce a weighted function 

w(t) = f(t)e−σt 

and note
 

lim w(t) = f(t)
 

σ 0→ 

The effect of the exponential weighting by e−σt 

is to allow convergence of the integral for a much 
broader range of functions f(t). 

(4) We take the Fourier transform of w(t) 

W (jΩ) = F̃ (jΩ σ)|
� ∞ �

f(t)e−σt
� 

e−jΩtdt= 
0 � ∞ 

f(t)e−(σ+jΩ)dt= 
0 

and define the complex variable s = σ + jΩ so 
that we can write 

F (s) = F̃ (jω|σ) = 
� 

0 

∞ 
f(t)e−stdt 

F (s) is the one-sided Laplace Transform. Note 
that the Laplace variable s = σ + jΩ is expressed 
in Cartesian form. 

The Z transform 

(1) We sample f(t) at intervals ΔT to produce 
f∗(t). We take its Fourier transform (and use the 
sifting property of δ(t)) to produce 

∞ 

fne−jnΩΔTF ∗(jΩ) = 
� 

n=0 

(2) We note that for some sequences fn (for exam­
ple the unit step sequence), the summation does 
not converge. 

(3) We introduce a weighted sequence 

{wn} = 
�
fnr−n� 

and note 
lim 

1 
{wn} = {fn}

r→ 

The effect of the exponential weighting by r−n is 
to allow convergence of the summation for a much 
broader range of sequences fn. 

(4) We take the Fourier transform of wn 

� �
fnr−n� 

e−jnΩΔTW ∗(jΩ) = F̃ ∗(jΩ r) = 
∞ 

| 
n=0 
∞ 

jΩΔT 
�−n 

= 
� 

fn 

�
re 

n=0 

and define the complex variable z = rejΩΔT so 
that we can write 

∞
F (z) = F̃ ∗(jΩ r) = 

� 
fnz−n | 

n=0 

F (z) is the one-sided Z-transform. Note that z = 
rejΩΔT is expressed in polar form. 
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� � 

� � � � 

� 

� � � � 

The Laplace Transform (contd.) 

(5) For a causal function f(t), the region of con­
vergence (ROC) includes the s-plane to the right 
of all poles of F (jΩ). 

�� � 

� � � � � � � � � 	 
 � 

The Z transform (contd.) 

(5) For a right-sided (causal) sequence {fn} the 
region of convergence (ROC) includes the z-plane 
at a radius greater than all of the poles of F (z). 

� 

� � � � � � � � � 
	 
 � 

� 
� � �� � � � 


 � � � � � � � � � � 

We note that the mapping between the s plane and the z plane is given by 

sΔT z = e 

and that the imaginary axis (s = jΩ) in the s-plane maps to the unit circle (z = ejΩΔT ) in the  
z-plane. 

Furthermore we note that the mapping of the unit circle in the z-plane to the imaginary axis 
in the s-plane is periodic with period 2π, and that the mapping of the jΩ axis to the unit circle 
produces aliasing for |Ω| > π/ΔT . 

If we define a normalized discrete-time frequency that is independent of ΔT , that is 

ω = ΩΔT ω ≤ π 

we can make the following comparisons: 

The Laplace Transform (contd.) 

(6) If the ROC includes the imaginary axis, the 
FT of f(t) is  F (jΩ): 

F (jΩ) = F (s) |s=jΩ 

(7) The convolution theorem states 
� ∞ L

f(t) ⊗ g(t) =  f(τ)g(t − τ)dτ ⇐⇒ F (s)G(s) 
−∞ 

(8) For an LTI system with transfer function 
H(s), the frequency response is 

H(s) |s=jΩ = H(jΩ) 

if the ROC includes the imaginary axis. 

The Z transform (contd.) 

(6) If the ROC includes the unit circle, the DFT 
of {fn}, n = 0, 1, . . . , N  − 1. is {Fm} where 

Fm = F (z) |z=ejωm = F (ejωm), 

where ωm = 2πm/N for m = 0, 1, . . . , N  − 1. 
(7) The convolution theorem states 

∞ Z{fn} ⊗ {gn} = fmgn−m ⇐⇒ F (z)G(z) 
m=−∞ 

(8) For a discrete LSI system with transfer func­
tion H(z), the frequency response is 

H(z) | jω = H(ejω) |ω| ≤ πz=e 

if the ROC includes the unit circle. 
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The Laplace Transform (contd.) 

(9) The transfer function 

bmsm + bm−1s
m−1 + . . . + b1s + b0

H(s) =  
ansn + an−1sn−1 + . . . + a1s + a0 

is derived from the ordinary differential equation 

dny dn−1y dy 
an n + an−1 n−1 . . . + a1 + a0y

dt dt dt 
dmf df 

= bm + . . . + b1 + b0f 
dtm dt 

(10) Poles of H(s) in the rh-plane indicate insta­
bility in the continuous-time system. 

(11) The frequency response H(jω) may be in­
terpreted geometrically from the poles and zeros 
of H(s) according to the following diagram: 

�

� 

� � � � � � � 

� 

� � 

� 	 

 


 �� 

� 

�� � 

	 

	 



 
� 

� 

� 

� 

then H(jΩo) =  H(s)| and s=jΩo 

m 

| H(jΩ)| = K � i=1 qi 
n 
i=1 ri 

n n 
	 =� H(jΩ) φi − θi 

i=1 i=1 

F(12) If f(t) ⇐⇒ F (s) then 

F −sτ F (s),f(t − τ) ⇐⇒ e 

which is the delay property of the Laplace trans­
form. 

The Z transform (contd.) 

(9) The transfer function 

bmz−m + bm−1z
−(m−1) + . . . + b1z

−1 + b0
H(z) =  

anz−n + an−1z−(n−1) + . . . + a1z−1 + a0 

is derived from the difference equation 

a0yk + a1yk−1 + . . . + an−1yk−(n−1) + a0yk−n 

= b0fk + b1fk−1 + . . . + bmfk−m 

(10) Poles of H(z) outside the unit circle indicate 
instability in the discrete-time system. 

(11) The frequency response H(jω), (ω = Ω/ΔT ) 
may be interpreted geometrically from the poles 
and zeros of H(z) according to the following dia­
gram: 

� 

� 

� � � � � � � 

� 	

 


 �� 

� 

�� � 

	 

	 



 
� 

� 

� 

� �� 


 � � � � � � � � � � 

� � � � 

then H(ejω) =  H(z)| jω and z=e 

� � � m 

� H(ejω)� = K � in 
=1 qi 

i=1 ri 
n n 

	� H(ejω) =  φi − θi 
i=1 i=1 

Z(12) If { fn} ⇐⇒ F (z) then 

Z{ fn−m} ⇐⇒ z −mF (z), 

which is the delay (shift) property of the Z trans­
form. 
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