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2.161 Signal Processing – Continuous and Discrete 

Op-Amp Implementation of Analog Filters.1 

Introduction 

Practical realizations of analog filters are usually based on factoring the transfer function 
into cascaded second-order sections, each based on a complex conjugate pole-pair or a pair 
of real poles, and a first-order section if the order is odd. Any zeros in the system may be 
distributed among the second- and first-order sections. Each first- and second-order section 
is then implemented by an active filter and connected in series. For example the third-order 
Butterworth high-pass filter 

3s
H(s) =  

s3 + 40s2 + 800s + 8000 

would be implemented as 

2s s 
H(s) =  × 

s2 + 20s + 400 s + 20  

as shown in Fig. 1. The design of each low-order block can be handled independently. 
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Figure 1: A third-order Butterworth filter (a) as a single third-order section, and (b) as a 
second-order and first-order section cascaded. 

State-variable active filters 

The state-variable filter design method is based on the block diagram representation used in 
the so-called phase-variable description of linear systems that uses the outputs of a chain of 
cascaded integrators as state variables. Consider a second-order filter block with a transfer 
function 

Y (s) b2s
2 + b1s + b0

H(s) = = (1)
U(s) s2 + a1s + a0 

1D. Rowell October 2, 2008 
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and split H(s) into two sub-blocks representing the denominator and numerator by intro­
ducing an intermediate variable x and rewrite 

X(s) 1 
H1(s) = = (2)

U(s) s2 + a1s + a0 

H2(s) =  
Y (s)

= b2s 2 + b1s + b0 (3)
X(s) 

so that H(s) =  H2(s)H1(s). 

The differential equations corresponding to Eqs. (2) and (3) are 

d2x dx 
+ a1 + a0x = u (4)

dt2 dt 

and 
d2x dx 

y = b2 + b1 + b0x. (5)
dt2 dt 

Rewrite Eq. (4) explicitly in terms of the highest derivative 

d2x dx 
= −a1 − a0x + u. (6)

dt2 dt 

Consider a pair of cascaded analog integrators with the output defined as x(t), as shown in 
Fig. 2, so that the derivatives of x(t) appear as inputs to the integrators. Note that Eq. (6) 

Figure 2: Cascaded integrators with output x(t). 

gives an explicit expression for the input to the first block in terms of the outputs of the two 
integrators and the system input, and therefore generates the block diagram for H1(s) (Eq. 
(5)) shown in Fig. 3. 
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Figure 3: State variable realization of H1(s) =  X(s)/U(s). 
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Figure 4: Full second-order state variable realization. 

Equation (5) shows that the output y(t) is a weighted sum of x(t) and its derivatives, 
leading to the complete second-order state variable filter block shown in Fig. 4. 

This basic structure may be used to realize the four basic filter types by appropriate 
choice of the numerator. Figure 5 shows how the output may be selected to achieve the 
following transfer functions: 

Y1(s) a0
Hlp(s) =  =	 a unity gain low-pass filter (7)

U(s) s2 + a1s + a0 

Y2(s) a1s 
Hbp(s) =  =	 a unity gain band-pass filter (8)

U(s) s2 + a1s + a0 

Y3(s) s2 

Hhp(s) =  =	 a unity gain high-pass filter (9)
U(s) s2 + a1s + a0 

Y4(s) s2 + a0
Hbs(s) =  =	 a unity gain band-stop filter (10)

U(s) s2 + a1s + a0 
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Figure 5: State variable implementation of various filter types.
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2.1 Op-amp Based State-Variable Filters 

Electronic implementation of the block diagram structure of Fig. 5 involves weighted sum­
mation and integration. These two operations can de achieved by the two op-amp circuts 
shown in Fig. 6. For the summer in Fig. 6a the output is 

� 
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� � � � � � 

Figure 6: Elementary op-amp circuits: (a) a summer, and (b) an integrator. 

Rf Rf 
vout = − v1 + v2

R1 R2 

and for the integrator in Fig. 6b 

1 t 
vout(t) =  − vin(t)dt. 

RinC 0 

and we note 

1. Common op-amp summing and integrating circuits involve a sign inversion. 

2. Op-amp integrators implicitly have a non-unity gain (unless RinC = 1). 

2.2 A Three Op-amp State Variable Filter Circuit 
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Figure 7: A three op-amp implementation of a second-order state-variable filter. 

Figure 6 shows a common implementation of the second-order state-variable filter using 
three op-amps. Amplifiers A1 and A2 are integrators with transfer functions 

1 1 1 1 
H1(s) =  − and H2(s) =  − . 

R1C1 s R2C2 s 
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Let τ1 = R1C1 and τ2 = R2C2. Because of the gain factors in the integrators and the sign 
inversions we have 

dv2 d2v2 
v1(t) =  −τ2 and v3(t) =  τ1τ2 . (11)

dt dt2 

Amplifier A3 is the summer. However, because of the sign inversions in the op-amp circuits 
we cannot use the elementary summer of Fig. 6a. Applying Kirchoff’s Current Law at the 
non-inverting and inverting inputs of A3 gives 

Vin − v+ v1 − v+ v3 − v− v2 − v− 
+ = 0 and + = 0. (12)

R5 R6 R4 R1 

Using the infinite gain approximation for the op-amp, we set v− = v+ and 

R3 R5 R4 R6 
v3 − v1 + v2 = Vin,

R3 + R4 R5 + R6 R3 + R4 R5 + R6 

and substituting for v1 and v3 from Eq. (11) we generate a differential equation in v2 

d2v2 1 +  R4/R3 dv2 R4 1 1 +  R4/R3 
+ + v2 = Vin (13)

dt2 τ1(1 + R6/R5) dt R3 τ1τ2 τ1τ2 (1 + R5/R6) 

which corresponds to a low-pass transfer function with 

Klpa0
H(s) =  (14) 

s2 + a1s + a0 

where 

R4 1 
a0 = 

R3 τ1τ2 

1 +  R4/R3 1 
a1 = 

1 +  R6/R5 τ1 

1 +  R3/R4
Klp = 

1 +  R5/R6 

A Band-Pass Filter: Selection of the output as the output of integrator A1 generates 
the transfer function 

Hbp(s) =  −τ1sHlp(s) =  
−Kbpa1s 

(15) 
s2 + a1s + a0 

where 
R6

Kbp = 
R5 

A High-Pass Filter: Selection of the output as the output of the summer A3 generates 
the transfer function 

Hhp(s) =  τ1τ2s 2Hlp(s) =  
Khps

2 

(16) 
s2 + a1s + a0 

where 
1 +  R4/R3

Khp = 
1 +  R5/R6 
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Figure 8: A band-stop second-order state-variable filter. 

A Band-Stop Filter: A band-stop characteristic requires a pair of conjugate zeros on 
the imaginary axis as defined in Eq. (10). This may be done by including an additional 
summing amplifier A4 as shown in Fig. 8. The output is 

R9 R9
Vo(s) =  − V2(s) − V3(s)

R8 R7 

R9 R9 2 = − V2(s) +  τ1τ2s V2(s)
R8 R7 

If R7 = R8 and R3 = R4, the filter transfer function simplifies to 

Vo(s) Vo(s) V2(s) −Kbs(s
2 + a0)

Hbs(s) = = = 
Vin(s) V2(s) Vin(s) s2 + a1s + a0 

where 
2R9

Kbs = . 
(1 + R5/R6)R8 

2.3 A Simplified Two Op-amp Based State-variable Filter: 

If the required filter does not require a high-pass action (that is, access to the output of the 
summer A1) the summing operation may be included at the input of the first integrator, 
leading to a simplified circuit using only two op-amps shown in Fig. 9. With the infinite 
gain assumption for the op-amps, that is V− = V+ , and with the assumption that no current 
flows in either input, we can apply Kirchoff’s Current Law (KCL) at the node designated 
(a) in Fig. 10: 

i1 + if − i3 = 0  
1 1 

(Vin − va) + sC1(v1 − va) − va = 0 (17)
R1 R3 

Using assumption 2 above, va = Vout, and realizing that the second stage is a classical op-amp 
integrator with transfer function 

Vout(s) 1 
= − 

v1(s) R2C2s 
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Figure 9: Two op-amp implementation of a “state-variable” second-order active low-pass

filter. 

1 1 
(Vin − Vout)

R1 
+ sC1(−R2C2sVout − Vout) − Vout 

R3 
= 0 (18) 

Figure 10: Feedback summation at the input of the first integrator. 

Eq. (18) may be rewritten 

1 1 
(Vin − Vout) + sC1(−R2C2sVout − Vout) − Vout = 0 (19)

R1 R3 
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which may be rearranged to give the second-order transfer function 

Vout(s) 1/τ1τ2 
= (20)

Vin(s) s2 + (1/τ2)s + (1 +  R1/R3)/τ1τ2 

which is of the form 
Klpa0

Hlp(s) =  (21) 
s2 + a1s + a0 

where 
1 

a0 = (1 +  R1/R3) (22)
τ1τ2 

1 
a1 = (23)

τ2 

1 
Klp = (24)

1 +  R1/R3 
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2.4 First-Order Filter Sections: 

Single pole low-pass filter sections with a transfer function of the form


KΩ0

H(s) =  

s + Ω0 

may be implemented in either an inverting or non-inverting configuration as shown in Fig. 
11. The inverting configuration (Fig. 11(a)) has transfer function 
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Figure 11: First-order low-pass filter sections (a) inverting, and (b) non-inverting. 

Vout(s) Zf R1 1/R1C 
= − = − 

Vin(s) Zin R2 s + 1/R1C 

where Ω0 = 1/R1C and K = −R1/R2. 
The non-inverting configuration of Fig. 11b is a first-order R-C lag circuit buffered by 

a non-inverting (high input impedance) amplifier with a gain K = 1 +  R3/R2. Its transfer 
function is 

Vout(s) 
� 

R3 
� 

1/R1C 
= 1 +  

Vin(s) R2 s + 1/R1C 

2.5 Summary of Features of the State-variable Filters 

•	 State-variable filters are capable of low-pass, band-pass, high-pass and band-stop func­
tions. 

•	 They are capable of realizing both overdamped and lightly damped pole pairs. 

•	 They are relatively insensitive (compared to other designs) to variation in component 
values. 

•	 They do not require a wide range of component values. 

•	 The coefficients in the transfer function may be set independently. 

•	 Other designs may require fewer op-amps. 

8 



3	 Design Examples: 

The following two examples involve all-pole low-pass filters, and are therefore suitable for 
the two op-amp circuit. We will use the following procedure to determine the component 
values. Given a filter with a unity-gain pole pair described by 

Klpa0
H(s) =  

s2 + a1s + a0 

where a0, a1, and Klp are as defined in Eqs. (22) through (24). The circuit components are 
chosen as follows: 

(a)	 We note that a1 = 1/τ2 = 1/R2C2, and therefore choose a convenient value for C2 and 
let R2 = 1/a1C2. 

(b) We arbitrarily let R3 = R1. setting Klp = 0.5. 

(c)	 With this condition a0 = 2/τ1τ2 = 2a1/R1C1, so we may choose a convenient value for 
C1 and then determine R1 = 2a1/(a0C1), which also defines R3. 

The design is then complete. 

3.1 Example 1 

Implement a second-order Butterworth filter with a 3 dB  cut-off frequency of 1000 rad/sec 
(159 Hz). 

The transfer function of the Butterworth filter is 

106 

H(s) =  
s2 + 1414s + 106 

Following the above procedure 

(a) Let C2 = 0.47 μF (a common value). Then R2 = 106/(1414 × 0.47) = 1504 Ω. 

(b) Let C1 = 0.47 μF. Then R1 = R3 = 2  × 1414/(106 × 0.47 × 10−6) = 6017 Ω 

and the final filter is shown in Fig. 3. The common 741 op-amp has been specified in this 
case. 

3.2 Example 2 

Design a fifth-order Chebyshev Type 1 low-pass filter, with a cut-off frequency of 1000 
rad/s, and allowing 1 dB of ripple in the pass-band. 

The Matlab commands 

[z,p,k] = cheby1(5,1,1000,’s’) 
filter = zpk(z,p,k) 

9 
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Figure 12: Second-order Butterworth design example. 

generate the following filter transfer function 

122828246505000 
H(s) =  

(s2 + 468.4s + 429300)(s2 + 178.9s + 988300)(s + 289.5) 
429300 988300 289.5 

= × × 
s2 + 468.4s + 429300 s2 + 178.9s + 988300 s + 289.5 

We implement the filter as two cascade second-order sections (each with a gain of Klp = 0.5) 
as above, and a single first-order non-inverting section with a gain of 4. We will use the two 
op-amp circuit 

Let all capacitors have a value of 0.47 μF. 

(1) For the first section a = 468.4, b = 429300: 

1 1 
R2 = = = 4, 542 Ω,

aC2 468.4 × 0.47 × 10−6 

2a 2 × 468.4 
R1 = R3 = = = 4, 642 Ω 

bC1 429, 300 × 0.47 × 10−6 

(2) For the second section a = 178.9, b = 988, 300: 

1 1 
R2 = = = 11, 893 Ω,

aC2 178.9 × 0.47 × 10−6 

2a 2 × 178.9 
R1 = R3 = = = 770 Ω 

bC1 988, 300 × 0.47 × 10−6 

(2) For the first-order section K = 4 Ωc = 289.5: 

1 1 
R1 = = = 7, 349 Ω,

ΩcC 289.5 × 0.47 × 10−6 

Let R2 = 1, 500 Ω, 

R3 = (K − 1)R2 = 3  × 1, 500 = 4, 500 Ω 

and the design is complete. The final circuit is shown in Fig. 13. 
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Figure 13: Fifth-order Chebyshev Type 1 low-pass design example. All resistor values are 
in ohms, all capacitor values are in microfarads. 

3.3 Example 3 

Design a second-order band-stop filter to reject 60 Hz interference, with a bandwidth of 
20Hz. 

We start with a first-order low-pass prototype filter with a cut-off frequency of 1 rad/sec. 
(Note that the low-pass to band-stop transformation will generate a second-order filter) 

1 
Hlp(s) =  . 

s + 1  

The Matlab commands 

[num,dden]=lp2bs(1,[1 1],2*pi*60,2*pi*20) 
filter = tf(num,den) 

generate the following filter transfer function 

s2 + 142100 
H(s) =  

s2 + 125.7s + 142100 
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We use the design equations described for band-stop filters in Section 2.3 with the circuit 
shown in Fig. 8, that is 

Vo(s) Vo(s) V2(s) −Kbs(s
2 + a0)

Hbs(s) = = = 
Vin(s) V2(s) Vin(s) s2 + a1s + a0 

where 

1 
a0 = 

τ1τ2 

2 1 
a1 = 

1 +  R6/R5 τ1 

2R9
Kbs = 

(1 + R5/R6)R8 

under the constraints that R3 = R4 and R7 = R8 in Fig. 8. 
√ √ 

(a)	 Let τ1 = τ2 = 1/ a0 = 1/ 142100 = 0.0027. Then (arbitrarily) let C1 = C2 = 0.47 μF, 
so that R1 = R2 = 0.0027/0.47 × 10−6 = 56442 Ω. 

(b) Since 
2 1 

a1 =	 ,
1 +  R6/R5 τ1 

R6 2	 2 
= − 1 = 	 − 1 = 5.0 

R5 a1τ 125.7 × 0.0027


We let R5 = 10000 Ω and R6 = 50000 Ω.


(c) We let R3 = R4 = R7 = R8 = 10000 Ω. 

(d) We set Kbs = 1 so that R9 = 0.5Kbs(1 + R5/R6)R8 = 6000 Ω. 

Which completes the design, as shown in Fig. 14. Note that this filter inverts the signal, so 
if the application requires maintaining the sign of the input an extra op-amp inverter should 
be used. 
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Figure 14: Second-order band-stop filter design example. All resistor values are in ohms, all 
capacitor values are in microfarads. 
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4 Single Op-Amp Second-Order Filter Sections 

There are many op-amp active filter circuits that will generate a second-order transfer func­
tion using a single op-amp. In this section we briefly introduce the infinite gain multiple 
feedback (MFB) structure and show how it may be configured as a low-pass, high-pass and 
band-pass second-order filter. Figure 15 shows the configuration with passive elements (resis­
tors and capacitors) represented by admittances. (Admittance is the reciprocal of impedance, 
and for a capacitor YC = sC, and for a resistor YR = 1/R.) 
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Figure 15: A General Infinite Gain Multiple Feedback Filter. 

For the circuit in Fig. 15 we can write node equations (Kirchoff’s Current Law) at the 
node designated (a), and the summing junction (b): 

(Y1 + Y2 + Y3 + Y4) Va − Y1Vin − Y4Vout = 0  

−Y3Va − Y5Vout = 0  

and eliminating Va gives the transfer function 

Vout(s) −Y1Y3 
= (25)

Vin(s) Y5(Y1 + Y2 + Y3 + Y4) +  Y3Y4 

and the various filter forms may be created by appropriate substitution of resistors and 
capacitors for the five admittances. 

4.1 A Low-pass MFB Filter 

If the circuit is configured as in Fig. 16 and we write Y1 = G1 = 1/R1, Y2 = sC2, Y3 = G3 = 
1/R3, Y4 = G2 = 1/R2, and Y5 = sC1 the resulting transfer function is 

−G1G3Vout(s)
= � C2C5 � (26)

Vin(s) s2 + G1+G2+G3 s + G3G2 
C2 C1C2 

which can be written as a low-pass system similar to Eq. (7 ) 

Vout(s) −ka0
Hlp(s) =  = (27)

Vin(s) s2 + a1s + a0 
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Figure 16: An infinite-gain Multiple Feedback low-pass filter. 

where 
1 

a0 = 
R2R3C1C2 

1 � 
1 1 1 � 

a1 = 
C2 R1 

+ 
R2 

+ 
R3 

(28) 

k = 
R2 

R1 

4.2 A High-pass MFB Filter 

A high-pass filter with a transfer function similar to Eq. (9), that is 

−ks2 

Hhp(s) =  
s2 + a1s + a0 

may be formed by configuring the circuit as in Fig. 17, that is with Y1 = sC1, Y2 = G1 = 
1/R1, Y3 = sC3, Y4 = sC2, and Y5 = G2 = 1/R2. Substitution into Eq. (26) gives 
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Figure 17: An infinite-gain Multiple Feedback high-pass filter . 

1 
a0 = 

R1R2C2C3 

C1 + C2 + C3 
a1 = (29)

R2C2C3 

C1
k = 

C2 
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4.3 A Band-pass MFB Filter 

A band-pass filter has a transfer function similar to Eq. (8), that is 

−ka1s 
Hhp(s) =  

s2 + a1s + a0 

If the circuit is configured as in Fig. 18 and Y1 = G1 = 1/R1, Y2 = G2 = 1/R2, Y3 = sC2, 
Y4 = sC1, and Y5 = G3 = 1/R3 then 
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Figure 18: An infinite-gain Multiple Feedback band-pass filter.


1 � 
1 1 � 

a0 = 
R3C1C2 R1 

+ 
R2 

a1 = 
C1 + C2 

R3C1C2 
(30) 

k = 
R3C2 

R1 (C1 + C2) 

4.4 Example 4 

Design a 4th-order high-pass Butterworth filter with a -3dB cut-off frequency of 1000 Hz 
using cascaded MFB sections. 

The MATLAB commands 

[num, den] = butter(4, 2*pi*1000, ’high’, ’s’); 
filter = tf(num, den) 

gives the transfer function 

4s
H(s) =  

s4 + 16420s3 + 1.348 × 108s2 + 6.482 × 1011s + 1.559 × 1015 

2 2s s
= × 

s2 + 4808s + 39478417 s2 + 11610s + 39478417 
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Implement both second-order systems according to Fig. 17, and let C1 = C2 = C3 = C = 0.1 
μF, so that Eqs. (30) become: 

1 
a0 = 

2R1R2C
3 

a1 = 
R2C 

k = 1  

or 
3 1 

R2 = and R1 = 
a1C a0R2C2 

For the two sections 

2s
H1(s) =  → C1 = C2 = C3 = 0.1μF, R2 = 6239Ω, R1 = 406Ω, 

s2 + 4808s + 39478417 

and 

2s
H1(s) =  → C1 = C2 = C3 = 0.1μF, R2 = 2584Ω, R1 = 980Ω. 

s2 + 11610s + 39478417 

The complete high-pass filter is shown in Fig. 19. 
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Figure 19: An 4th-order Butterworth Multiple Feedback high-pass filter with fc = 1000 Hz. 
Capacitances are in μF, and resistances are in ohms. 
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