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Introduction 

In the frequency-sampling filters the parameters that characterize the the filter are the 
values of the desired frequency response H(ejω) at a discrete set of equally spaced sampling 
frequencies. In particular, let 

2π 
ωk = k k = 0, . . . , N  − 1 (1)

N 

as shown in Fig. 1 for the cases of N even, and N odd. Note that when N is odd there 
is no sample at the Nyquist frequency, ω = π. The frequency-sampling method guarantees 
that the resulting filter design will meet the given design specification at each of the sample 
frequencies. 
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Figure 1: Representative z-plane location of frequency samples for (a) N even, and (b) N 
odd. 

For convenience denote the complete sample set {Hk} as 

Hk = H(ejωk ) k = 1, . . . , N  − 1. 

For a filter with a real impulse response {hn} we require conjugate symmetry, that is 

¯HN−k = Hk (2) 
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and further, for a filter with a real, even impulse response we require {Hk} to be real and 
even, that is 

HN−k = Hk.	 (3) 

Within these constraints, it is sufficient to specify frequency samples for the upper half of 
the z-plane, that is for 

2π k = 0, . . . ,  N−1 N odd 
ωk = k N	 

2 (4)
N k = 0, . . . ,  

2 N even. 

and use Eqs. (2) or (3) to determine the other samples. 
If we assume that H(ejω) may be recovered from the complete sample set {Hk} by the 

cardinal sinc interpolation method, that is 

N−1 

H(ejω) =  
� 

Hk 
sin (ω − 2πk/N) 

(5)
ω − 2πk/N k=0 

then H(ejω) is completely specified by its sample set, and the impulse response, of length 
N , may be found directly from the inverse DFT, 

{hn} = IDFT {Hk} 

where 
N−11 � 

j 2πkn 
hn = Hke N n = 0, . . . , N  − 1	 (6)

N k=0 

As mentioned above, this method guarantees that the resulting FIR filter, represented by 
{hn}, will meet the specification H(ejω) =  Hk at ω = ωk = 2kπ/N . Between the given 
sampling frequencies the response H(ejω) will be described by the interpolation of Eq. (5). 

1.1 Linear-Phase Frequency-Sampling Filter 

The filter described by Eq. (6) is finite, with length N , but is non-causal. To create a 
causal filter with a linear phase characteristic we require an impulse response that is real 
and symmetric about its mid-point. This can be done by shifting the computed impulse 
response to the right by (N − 1)/2 samples to form 

H ′(z) =  z −(N−1)/2H(z) 

but this involves a non-integer shift for even N . Instead, it is more convenient to add the 
appropriate phase taper to the frequency domain samples Hk before taking the IDFT. The 
non-integer delay then poses no problems: 

•	 Apply a phase shift of
 
πk(N − 1)
 

φk = −	 (7)
N
 

to each of the samples in the upper half z-plane
 

H ′ jφk 
k = 0, . . . , (N − 1)/2 (for n odd) 

= Hkek	 k = 0, . . . , N/2 (for n even) 
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• Force the lower half plane samples to be complex conjugates using Eq. (2).
 

H ′ = H̄ ′ k = 1, . . . , (N − 1)/2 (for n odd) 
N−k k k = 1, . . . , N/2 − 1 (for n even) 

• Then the linear-phase impulse response is 

{hn} = IDFT {Hk 
′ } 

1.2 A Simple MATLAB Frequency-Sampling Filter 

The Appendix contains a MATLAB script of a tutorial frequency-sampling filter 
h = firfs(samples) 

that takes a vector samples of length N of the desired frequency response, and returns the 
linear-phase impulse response h of length 2N − 1. 

The following MATLAB commands were used to generate a filter with 22 frequency 
samples, generating a length 43 filter. 

h=firfs([1 1 1 1 0.4 0 0 0 0 0.8 2 2 2 2 0.8 0 0 0 0 0 0 0 ]); 
freqz(h,1) 

The filter has two pass-bands; a low-pass region with a gain of unity, and a band-pass region 
with a gain of two. Notice that the band-edges have been specified with transition samples, 
this is discussed further below. The above commands produced the following frequency 
response for the filter. 
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1.3 The Effect of Band-Edge Transition Samples 

One of the advantages of the frequency-sampling filter is that the band-edges may be more 
precisely specified than the window method. For example, low-pass filters might be specified 
by 

h = firfs([1 1 1 1 1 0.4 0 0 0 0 0 0]); 
with one transition value of 0.4, or 

h = firfs([1 1 1 1 0.7 0.2 0 0 0 0 0 0]); 
with a pair of transition specifications. The frequency-sampling filter characteristic will pass 
through these points, and they can have a significant effect on the stop-band characteristics 
of the filter. 

Figure 2 shows the effect of varying the value of a single transition point in a filter of 
length N = 33. The values shown are for t = 0.6, 0.4 and 0.2. There is clearly a significant 
improvement in the stop-band attenuation for for the case t = 0.4. Similarly Fig. 3 compares 
the best of these single transition values (t = 0.4) with a the response using two transition 
points (t1 = 0.59, t2 = 0.11). The filter using two transition points shows a significant 
improvement in the stop-band over the single point case, at the expense of the transition 
width. 

Rabiner et al. (1970) did an extensive linear-programming optimization study to deter­
mine the optimum value of band edge transition values, and tabulated the results for even 
and odd filters of different lengths. The results show that for one transition point topt ≈ 0.4, 
and for two points topt ≈ 0.59, and 0.11. 
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Frequency f/F

N 

Figure 2: The effect of including a single transition value with value t on the stop-band 
characteristics of a low-pass (N=33) frequency sampling filter 
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Figure 3: The effect of including a two band-edge transition values t1 and t2 on the stop-band 
characteristics of a low-pass (N=33) frequency sampling filter. In this case the comparison 
is with the single value t = 0.4 frequency response. 

2	 A Recursive Realization of the Frequency-Sampling 
Filter 

We saw above that the impulse response hn is the IDFT of the phase-shifted frequency 
samples or
 

1 N−1 
j 2πn khn = 

� 
Hk
� e .N 

N k=0 

The z-transform is then 
N−1 

H(z) = 
� 

hnz−n 

n=0 

N−1 
� 

1 N−1 
j 2πn 

�
k = 

� � 
Hk
� e N z−n	 (8)

N n=0 k=0 

and reversing the summation order 

1 N−1 N−1 
j 2πk 

H(z) = 
� 

Hk
� � �

e N z−1
�n 

N k=0 n=0 

The z-transform of a finite exponential sequence xn = an for n = 0, . . . , N −1 and 0 elsewhere 
is 

1 − (az−1)N 

X(z) = 
1 − az−1 
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so that 
1 �

1 − z−N 
� N−1 Hk

�
H(z) = 

� 
(9)

N k=0 1 − (ej2πk/N )z−1 

In this form the transfer function is expressed directly in terms of the frequency samples 
instead of the impulse response. 

Equation (9) expresses the filter as a pair of cascaded filters, H(z) = H1(z)H2(z) where 

H1(z) = 
1 �

1 − z−N 
� 

(10)
N 

is a non-recursive, all-zero filter with N zeros located on the unit-circle, at zk = ej2πk/N , 
k = 0, . . . , N − 1. The difference equation for this filter is simply 

1 
xn = (fn − fn−N )

N 

The second filter is a bank of parallel first-order recursive systems 

N−1 Hk
�

H2(z) = 
� 

(11) 
k=0 1 − (ej2πk/N )z−1 

each of which has a pole pk that coincides with a zero in H1(z). The difference equation for 
each of these filters will be 

yk,n = (ej2πk/N )yk,n−1 + Hk
� xn 

which involves complex arithmetic. However if we combine two such filters corresponding 
to complex conjugate pole pairs, and recognize that H � and Hk

� are complex conjugates, N −k 

then a second-order filter with real coefficients results. 

H � H �
Hk(z) = k + N−k 

1 − (ej2πk/N )z−1 1 − (ej2π(N−k)/N )z−1 

Ak − Bkz
−1 

= (12)
1 − 2 cos(2πk/N)z−1 + z−2 

where 

Ak = Hk
� + H �

N−k 

Bk = Hk
� e−j2πk/N + H � j2πk/N 

N−ke 

and for the linear-phase filter with Hk
� = Hke

−jπk(N−1)/N 

� 
πk 

� 

Ak = Bk = (−1)k2Hk cos . (13)
N 

The difference equation for the kth second-order linear-phase filter element is therefore 

yk,n = 2 cos(2πk/N)yk,n−1 − yk,n−2 + Ak (xn − xn−1) . 
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Figure 4: Single second-order filter section in H2(z) representing complex conjugate fre­
quency samples Hk

� and H �
N−k. 

The structure of a single second-order filter section is shown in Fig. 4. 
The complete filter H2(z) consists of a parallel bank of second-order blocks, supplemented 

fist-order blocks as necessary: 

(N−1)/2 � 

k=0 

Ak − Bkz
−1
 


1 − 2 cos(2πk/N)z−1 + z−2
 


H0
H2(z) = 

1 − z−1 
for N odd, (14)

+
 


or
 


(N/2)−1 

k=0 

Ak − Bkz
−1
 


1 − 2 cos(2πk/N)z−1 + z−2
 


H0 HN/2
H2(z) = for N even. (15)
+
 +
 


1 − z−1 1 + z−1 

The advantage of this structure is in the implementation of narrow band filters where many 
of the frequency samples Hk are specified as zero. Then many of the second-order blocks 
will have zero gain and need not be included in the realization, greatly reducing the compu­
tational burden. 

Example: Show the frequency-sampling realization of a N = 32 linear-phase 
FIR filter with frequency samples: 

⎧
⎪ 

⎩
⎨
⎪ 

1 k = 0, 1, 2
 

0.5 k = 3
Hk = H(ej2πk/32) = 
0 k = 4, 5, . . . , 15 

single first-order block, corresponding to H0
�H2(z) will contain a
 
 ,
 and three
 


second-order blocks corresponding to H1
� . H2

� and H3
� and their complex conju­

gates H31, H30, and H29.
 From Eq. (13), 

A1 = B1 = −2 cos (π/32)
 

A2 = B2 = 2 cos (π/16)
 

A3 = B3 = − cos (3π/32)
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The complete structure is shown in Fig. 5. As shown there will be a total of 6 
multiplications and 14 additions in the computation of each output value, which 
represents a considerable savings over the convolution with an impulse response 
length N = 32. 
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Figure 5: The complete N = 32 filter in the example, with three second-order blocks and 
one first-order block in H2(z). 
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Appendix: A Simple MATLAB Linear-Phase FIR Function 
% ------------------------------------------------------------------------­
% 2.161 Classroom Example - firfs - A simple Frequency-Sampling Linear-Phase FIR 
% Filter based on DFT interpolation. 
% Usage : h = firfs(samples) 
% where samples - is a row vector of M equi-spaced, real values 
% of the freq. response magnitude. 
% The samples are interpreted as being equally spaced around 
% the top half of the unit circle at normalized (in terms of 
% the Nyquist frequency f_N) frequencies from 
% 0 to 2(M-1)/(2M-1) x f_N, 
% or at frequencies 2k/(2N-1)xf_N for k = 0...M-1 
% Note: Because the length is odd, the frequency response 
% is not specified at f_N. 
% h - is the output impulse response of length 2M-1 (odd). 
% 
% The filter h is real, and has linear phase, i.e. has symmetric 
% coefficients obeying h(k) = h(2M+1-k), k = 1,2,...,M+1. 
% 
% Version: 1.0 
% Author: D. Rowell 10/6/07 
% ------------------------------------------------------------------------­
% 
function h = firfs(samples) 
% 
% Find the length of the input array... 
% The complete sample set on the unit circle will be of length (2N-1) 
% 
N = 2*length(samples) -1; 
H_d = zeros(1,N); 
% 
% We want a causal filter, so the resulting impulse response will be shifted 
% (N-1)/2 to the right. 
% Move the samples into the upper and lower halves of H_d and add the 
% linear phase shift term to each sample. 
% 
Phi = pi*(N-1)/N; 
H_d(1) = samples(1); 
for j = 2:N/2-1 

Phase = exp(-i*(j-1)*Phi); 
H_d(j) = samples(j)*Phase; 
H_d(N+2-j) = samples(j)*conj(Phase); 

end 
% 
% Use the inverse DFT to define the impulse response. 
% 
h = real(ifft(H_d)); 
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