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2.161 Signal Processing — Continuous and Discrete

Frequency-Sampling FIR Filters:

1 Introduction

In the frequency-sampling filters the parameters that characterize the the filter are the
values of the desired frequency response H(e?) at a discrete set of equally spaced sampling
frequencies. In particular, let

27
as shown in Fig. 1 for the cases of N even, and N odd. Note that when N is odd there
is no sample at the Nyquist frequency, w = m. The frequency-sampling method guarantees

that the resulting filter design will meet the given design specification at each of the sample
frequencies.
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Figure 1: Representative z-plane location of frequency samples for (a) N even, and (b) N

odd.

For convenience denote the complete sample set {H} as

Hk = H(@jwk)

k=1,...,N—1.

For a filter with a real impulse response {h,} we require conjugate symmetry, that is

Hy_p = Hy,
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and further, for a filter with a real, even impulse response we require {Hy} to be real and
even, that is
Hy ) = Hy. (3)

Within these constraints, it is sufficient to specify frequency samples for the upper half of
the z-plane, that is for

W = (4)

N
)

2—7rk k::(),...,% N odd
N 0 = N even.

and use Egs. (2) or (3) to determine the other samples.
If we assume that H(e’*) may be recovered from the complete sample set {H}} by the
cardinal sinc interpolation method, that is

, = sin(w — 27k/N)
H(e) = H
(") kz:% - 21k /N

()

then H(e’*) is completely specified by its sample set, and the impulse response, of length
N, may be found directly from the inverse DFT,

{h,} = IDFT {H,}

where
1 N1 - 2mkn
hp=— > Hpe ™~ n=0,....,.N—1 (6)
N =
As mentioned above, this method guarantees that the resulting FIR filter, represented by
{h,}, will meet the specification H(e*) = Hy at w = wp = 2kw/N. Between the given

sampling frequencies the response H(e/*) will be described by the interpolation of Eq. (5).

1.1 Linear-Phase Frequency-Sampling Filter

The filter described by Eq. (6) is finite, with length N, but is non-causal. To create a
causal filter with a linear phase characteristic we require an impulse response that is real
and symmetric about its mid-point. This can be done by shifting the computed impulse
response to the right by (N — 1)/2 samples to form

H'(2) = 2= W=D2[1(2)

but this involves a non-integer shift for even N. Instead, it is more convenient to add the
appropriate phase taper to the frequency domain samples H before taking the IDFT. The
non-integer delay then poses no problems:

e Apply a phase shift of
k(N —1)

bo =" 7)
to each of the samples in the upper half z-plane
; k=0,...,(N—-1)/2 (for n odd)
e J Pk ) )
Hy, = Hye { k=0,...,N/2 (for n even)



e Force the lower half plane samples to be complex conjugates using Eq. (2).

oo E=1,...,(N—-1)/2 (for n odd)
N—k = "7k k=1,...,N/2—1 (for n even)

e Then the linear-phase impulse response is

{h,} = IDFT {H}}

1.2 A Simple MATLAB Frequency-Sampling Filter

The Appendix contains a MATLAB script of a tutorial frequency-sampling filter
h = firfs(samples)
that takes a vector samples of length N of the desired frequency response, and returns the
linear-phase impulse response h of length 2NV — 1.
The following MATLAB commands were used to generate a filter with 22 frequency
samples, generating a length 43 filter.

h=firfs([11110.400000.822220.80000000 1);
freqz(h,1)

The filter has two pass-bands; a low-pass region with a gain of unity, and a band-pass region
with a gain of two. Notice that the band-edges have been specified with transition samples,
this is discussed further below. The above commands produced the following frequency
response for the filter.
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1.3 The Effect of Band-Edge Transition Samples

One of the advantages of the frequency-sampling filter is that the band-edges may be more
precisely specified than the window method. For example, low-pass filters might be specified
by

h=firfs([111110.4000000]1);
with one transition value of 0.4, or

h = firfs({11110.70.200000 0]);
with a pair of transition specifications. The frequency-sampling filter characteristic will pass
through these points, and they can have a significant effect on the stop-band characteristics
of the filter.

Figure 2 shows the effect of varying the value of a single transition point in a filter of
length N = 33. The values shown are for t = 0.6,0.4 and 0.2. There is clearly a significant
improvement in the stop-band attenuation for for the case ¢ = 0.4. Similarly Fig. 3 compares
the best of these single transition values (¢t = 0.4) with a the response using two transition
points (t; = 0.59, t; = 0.11). The filter using two transition points shows a significant
improvement in the stop-band over the single point case, at the expense of the transition
width.

Rabiner et al. (1970) did an extensive linear-programming optimization study to deter-
mine the optimum value of band edge transition values, and tabulated the results for even
and odd filters of different lengths. The results show that for one transition point ¢, ~ 0.4,
and for two points t,,; ~ 0.59, and 0.11.
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Figure 2: The effect of including a single transition value with value ¢ on the stop-band
characteristics of a low-pass (N=33) frequency sampling filter



10

t1=.59,t2=0.11 .
- - —t=04

Magnitude (dB)

R AY |
| ? /\,/—\dml | lJ 7
|
|
_80 1 1 1 1 1 1 1

| |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency f/fN

Figure 3: The effect of including a two band-edge transition values ¢; and ¢5 on the stop-band
characteristics of a low-pass (N=33) frequency sampling filter. In this case the comparison
is with the single value t = 0.4 frequency response.

2 A Recursive Realization of the Frequency-Sampling
Filter

We saw above that the impulse response h,, is the IDFT of the phase-shifted frequency
samples or

1 -27Tn
hp=— Y Hed~F
N =
The z-transform is then
N-1
H(z) = hpz™"
n=0
N-1 ( 1N,
= — Y Hed'~ ) 2" (8)
n=0 N k=0
and reversing the summation order
1 N-1 N-1 - n
H(z) = N H, (eJTZ_l)
k=0 n=0
The z-transform of a finite exponential sequence x,, = a"™ forn = 0,..., N—1 and 0 elsewhere
is
1— —1\N
X(z)= L)

1 —az!
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so that Vot
1 N N Hj,
H(z) = N (1 -z ) Z 1 — (es2nk/N) =1 (9)

k=0

In this form the transfer function is expressed directly in terms of the frequency samples
instead of the impulse response.
Equation (9) expresses the filter as a pair of cascaded filters, H(z) = H;(z)Hy(z) where

Hi(2) = ;f (1-2") (10)

is a non-recursive, all-zero filter with N zeros located on the unit-circle, at z, = e/2™%/N

k=0,...,N —1. The difference equation for this filter is simply

1

Tp = N (fn - fan)

The second filter is a bank of parallel first-order recursive systems

PRSI pp— (1)
2 Z) = = 1_ <€j27rk/N)Z*1

each of which has a pole py that coincides with a zero in Hy(z). The difference equation for
each of these filters will be

ej27rk/N)

Ykn = ( Yk,n—1 + H]/gxn

which involves complex arithmetic. However if we combine two such filters corresponding
to complex conjugate pole pairs, and recognize that H)_, and Hj, are complex conjugates,
then a second-order filter with real coefficients results.

Hj, Hy
Hi(2) = 1 — (ed2nk/N)z=1 1 — (ei2r(N—k)/N) ;=1
Ap — Bzt
_ k kZ (12)
1 —2cos(2mk/N)z=t + 272
where
Ay = Hp+Hy,
Bk — H;Ce_j27rk/N 4 HEV_kBjQTrk/N
and for the linear-phase filter with Hj = Hye /™ N-D/N
& mk

The difference equation for the kth second-order linear-phase filter element is therefore
Yin = 2€08(2Tk /N)Ykn-1 — Yen—2 + Ak (Tn — Tn-1).
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Figure 4: Single second-order filter section in Hy(z) representing complex conjugate fre-
quency samples H; and Hjy_,.

The structure of a single second-order filter section is shown in Fig. 4.
The complete filter Hy(z) consists of a parallel bank of second-order blocks, supplemented
fist-order blocks as necessary:

H, (N-1)/2 Ay — Bkz_l

Ho(z) =
2(2) 11—zt * kz::() 1 —2cos(2mk/N)z=1 + 272

for N odd, (14)

or

Hy Hpyyo N2 A — Bzt
H. = for N . 15
2(2) 1— 2zt i 1+ 271 * kz::o 1 —2cos(2mk/N)z=1 + 272 or N even. (1)

The advantage of this structure is in the implementation of narrow band filters where many
of the frequency samples Hj are specified as zero. Then many of the second-order blocks
will have zero gain and need not be included in the realization, greatly reducing the compu-
tational burden.

Example: Show the frequency-sampling realization of a N = 32 linear-phase
FIR filter with frequency samples:

1 k=012
Hy=H(e”™%)={ 05 k=3
0 k=45,...,15

Hy(z) will contain a single first-order block, corresponding to H, and three
second-order blocks corresponding to Hj. Hj and Hj and their complex conju-
gates Hj,, Hi,, and Hiy. From Eq. (13),

Ay =By = —2cos(n/32)
Ay =By = 2cos(m/16)
A3 =By = —cos(37/32)
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The complete structure is shown in Fig. 5. As shown there will be a total of 6
multiplications and 14 additions in the computation of each output value, which
represents a considerable savings over the convolution with an impulse response
length N = 32.
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Figure 5: The complete N = 32 filter in the example, with three second-order blocks and
one first-order block in Hy(z).



Appendix: A Simple MATLAB Linear-Phase FIR Function

% _________________________________________________________________________
% 2.161 Classroom Example - firfs - A simple Frequency-Sampling Linear-Phase FIR

/A Filter based on DFT interpolation.

% Usage : h = firfs(samples)

yA where samples - 1is a row vector of M equi-spaced, real values

/A of the freq. response magnitude.

yA The samples are interpreted as being equally spaced around
% the top half of the unit circle at normalized (in terms of
b the Nyquist frequency f_N) frequencies from

b 0 to 2(M-1)/(2M-1) x f_N,

yA or at frequencies 2k/(2N-1)xf_N for k = 0...M-1

% Note: Because the length is odd, the frequency response

b is not specified at f_N.

yA h - is the output impulse response of length 2M-1 (odd).

h

yA The filter h is real, and has linear phase, i.e. has symmetric

% coefficients obeying h(k) = h(2M+1-k), k = 1,2,...,M+1.

2

% Version: 1.0

% Author: D. Rowell 10/6/07
-
h

function h = firfs(samples)

h

% Find the length of the input array...

% The complete sample set on the unit circle will be of length (2N-1)
h

N = 2*length(samples) -1;

H_d = zeros(1,N);

o

% We want a causal filter, so the resulting impulse response will be shifted
% (N-1)/2 to the right.

% Move the samples into the upper and lower halves of H_d and add the
% linear phase shift term to each sample.

t

Phi = pi*(N-1)/N;

H_d(1) = samples(1);

for j = 2:N/2-1

Phase = exp(-i*(j-1)*Phi);

H_d(j) = samples(j)*Phase;

H_d(N+2-j) = samples(j)*conj(Phase);
end

o

% Use the inverse DFT to define the impulse response.
o

h = real(ifft(H_d));
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