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2.161 Signal Processing – Continuous and Discrete 

The Dirac Delta and Unit-Step Functions1 

The Dirac Delta (Impulse) Function 

The Dirac delta function is a non-physical, singularity function with the following definition 

0 for t = 0� 
δ(t) =  (1)

undefined at t = 0  

but with the requirement that ∫ ∞ 
δ(t)dt = 1, (2) 

−∞ 

that is, the function has unit area. Despite its name, the delta function is not truly a function. 
Rigorous treatment of the Dirac delta requires measure theory or the theory of distributions. 
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Figure 1: Unit pulses and the Dirac delta function. 

Figure 1 shows a unit pulse function δT (t), that is a brief rectangular pulse function of extent 
T , defined to have a constant amplitude 1/T over its extent, so that the area T × 1/T under the 
pulse is unity: ⎧ ⎪ ⎨ 0 for t ≤ 0 

δT (t) =  1/T 0 < t  ≤ T (3) ⎪ ⎩ 0 for t > T  . 

The Dirac delta function (also known as the impulse function) can be defined as the limiting form 
of the unit pulse δT (t) as the duration T approaches zero. As the extent T of δT (t) decreases, the 
amplitude of the pulse increases to maintain the requirement of unit area under the function, and 

δ(t) = lim δT (t). (4) 
T →0 

The impulse is therefore defined to exist only at time t = 0, and although its value is strictly 
undefined at that time, it must tend toward infinity so as to maintain the property of unit area in 
the limit. 

D. Rowell, September 5, 2008 
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In addition to the one-sided unit pulse described above, the delta function may be considered 
as the limit of several other functions 

δ(t) = lim δa(t) 
a→0 

where δa(t) is sometimes called a nascent delta function. The following are some commonly used 
approximations: 

δa(t) =  

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 
a 

for |t| ≤  
a 
2 

0 for |t| > 
a 
2 

“rect” function 

δa(t) =  

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 
a 
− 

4 
a2 |t| for |t| ≤  

a 
2 

0 for |t| > 
a 
2 

triangular function 

δa(t) =  
1 

a 
√ 

π 
e −t2/a2 

Gaussian function 

δa(t) =  
1 
π 

a 
a2 + t2 Cauchy-Lorentz distribution 

δa(t) =  
1 
a 
e−|t/a| Cauchy ϕ function 

δa(t) =  
1 
aπ 

( 
sin (t/a) 

t/a 

) 

sinc function 

δa(t) =  
1 
aπ 

( 
sin (t/a) 

t/a 

)2 

sinc2 function 

All of these functions have the property that as a → 0, the function becomes impulse-like in the 
neighborhood of t = 0, with unit area under the curve. 

The impulse function is used extensively in the study of linear systems, both spatial and tem­
poral. Although true impulse functions are not found in nature, they are approximated by short 
duration, high amplitude phenomena such as a hammer impact on a structure, or a lightning strike 
on a radio antenna. As we will see below, the response of a causal linear system to an impulse 
defines its response to all inputs. 

1.1 Properties 

1.1.1 Shift 

An impulse occurring at t = a is δ(t − a). 

1.1.2 The strength of an impulse 

Because the amplitude of an impulse is infinite, it does not make sense to describe a scaled impulse 
by its amplitude. Instead, the strength of a scaled impulse Kδ(t) is defined by its area K. 
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1.1.3 The “Sifting” Property of the Impulse 

When an impulse appears in a product within an integrand, it has the property of ”sifting” out 
the value of the integrand at the point of its occurrence: ∫ ∞ 

f (t)δ(t − a)dt = f(a)	 (5) 
−∞ 

This is easily seen by noting that δ(t − a) is zero except at t = a, and for its infinitesimal duration 
f (t) may be considered a constant and taken outside the integral, so that ∫ ∞	 ∫ ∞ 

f(t)δ(t − a)dt = f(a) δ(t − a)dt = f(a)	 (6) 
−∞	 −∞ 

from the unit area property. 

1.1.4 Scaling 

A helpful identity is the scaling property: ∫ ∞ ∫ ∞ du 1 
δ(αt)dt = δ(u) = 

−∞ −∞ |α| |α| 
and so 

1 
δ (αt) =  δ(t). |α| 

1.1.5 Laplace Transform 

∫ ∞ 
L{δ(t)} = δ(t)e −stdt = 1  

0− 

by the sifting property. 

1.1.6 Fourier Transform 

∫ ∞ 
F {δ(t)} = δ(t)e −jΩtdt = 1  

−∞ 

by the sifting property. 

2 Practical Applications of the Dirac Delta Function 

•	 The most important application of δt in linear system theory is directly related to its Laplace 
transform property, L{δ(t)} = 1. Consider a SISO LTI system with transfer function H(s), 
with input u(t) and output y(t), so that in the Laplace domain 

Y (s) =  H(s)U(s). 

If the input is u(t) =  δ(t), so that U(s) = 1, then Y (s) =  H(s).1, and through the inverse 
Laplace transform 

y(t) =  h(t) =  L−1 {H(s)} . 

where h(t) is defined as the system’s impulse response. The impulse response completely 
characterizes the system, in the sense that it allows computation of the transfer function (and 
hence the differential equation). 
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•	 The impulse response h(t) is used in the convolution integral. 

•	 In signal processing the delta function is used to create a Dirac comb (also known as an 
impulse train, or Shah function): 

∞ 

ΔT (t) =  δ(t − nT ) 
n=−∞ 

is used in sampling theory. A continuous waveform f(t) is  sampled by multiplication by the 
Dirac comb ∞ 

f ∗(t) =  f(t)ΔT (t) =  f(t − nT )δ(t − nT ), 
n=−∞ 

where f ∗(t) is the sampled waveform, producing a train of weighted impulses. 

The Heaviside (Unit-Step) Function 

The unit-step function us(t), also known as the Heaviside function, is a discontinuous function with 
a value 0 for negative arguments, and unity for positive arguments, as shown in Fig. 2. 

� � � � � � 

Figure 2: The Heaviside, or unit-step function. 

The unit-step is an antiderivative of the Dirac delta in the sense that 

t 
us(t) =  δ(u)du for t = 0� 

−∞ 

where this relation may not hold (or even make sense) for t = 0. The value of us(0) is subject to 
some debate, and is often given as us(0) = 0, us(0) = 1, or us(0) = 0.5. In practice the value rarely 
matters because us(t) usually appears within an integral. However, the value us(0) = 0.5 has some 
conceptual appeal, especially when using an analytic approximation to the unit-step. 

A useful representation of us(t) is  

1 + sgn(t) 
us(t) =  

2 

where sgn() denotes the signum (sign) function ⎧ ⎪ −1 for t <  0⎨ 
sgn(t) = 0 for t = 0  . ⎪ ⎩ 1 for t >  0 

Clearly this definition of us(t) supports the convention us(0) = 0.5. 
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3.1 Analytic Approximations 

The limiting form of many sigmoid type functions centered on t = 0 may be used as an approxi­
mation to the Heaviside function, for example: 

1 1 
us(t) = lim (1 + tanh (kt)) = 

k→∞ 2 1 + e−2kt � 
1 1 

� 

us(t) = lim + arctan (kt)
k→∞ 2 π 

1 
us(t) = lim (1 + erf (kt))

k→∞ 2 

3.2 Integral representation 

An integral representation is often useful 

1 
us(t) = lim 

1 
� ∞ 

e−jtτ dτ 
� 0+ 

−
2π τ + j� → −∞ 

3.3 Properties 

3.3.1 Shift 

A unit-step occurring at t = a is simply us(t − a). 

3.3.2 Derivative and Antiderivative 

While not strictly differentiable, the derivative of the unit-step is taken to be the Dirac delta 

d 
us(t) = δ(t). 

dt 

The integral of us(t) is � t 
us(µ)dµ = 

� 
0 for t < 0 

−∞ t for t ≥ 0 

which is the unit ramp function r(t). 

3.3.3 Laplace Transform 

1 L{us(t)} = 
s 

3.3.4 Fourier Transform 

Although the Fourier integral does not converge directly for us(t), it is easy to show that 

1 1 F {us(t)} =
2
δ (jΩ) + 

jΩ 

See the class handout on Fourier transforms for details. 
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3.4 Practical Applications of the Unit-Step Function 

Perhaps the most common use of us(t) is as a multiplicative weighting function to create causal • 
(one-sided) functions. For example, a causal exponential time function may be expressed as
 


f(t) = us(t)e−σt .
 


As a test input signal for characterizing the response of linear systems throughout linear
• 
system theory and feedback control theory.
 


As the basis for synthesizing zero-order (staircase or boxcar) functions. For example a rect­
• 
angular pulse
 


f(t) =
 


⎧
⎪ 

⎩
⎨
⎪ 

0 for t < 1.5
 

3 for 1.5 ≤ t < 5 
0 for t ≥ 5 

may be written 
f(t) = 3 (us (t − 1.5) − us (t − 5)) . 

Similarly, a zero-order approximation rT (t) to a continuous unit ramp r(t) = t for t > 0, and 
updated at intervals T , may be written as a sum of shifted step functions: 

rT (t) = 
∞ 

n=0 

us(t − nT ) 
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