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2.161 Signal Processing - Continuous and Discrete 

Introduction to Least-Squares Adaptive Filters1 

1 Introduction 

In this handout we introduce the concepts of adaptive FIR filters, where the coefficients are contin­
ually adjusted on a step-by-step basis during the filtering operation. Unlike the static least-squares 
filters, which assume stationarity of the input, adaptive filters can track slowly changing statistics 
in the input waveform. 

The adaptive structure is shown in Fig. 1. The adaptive filter is FIR of length M with coefficients 
bk, k = 0, 1, 2, . . . , M  − 1. The input stream {f(n)} is passed through the filter to produce the 
sequence {y(n)}. At each time-step the filter coefficients are updated using an error e(n) =  d(n) − 
y(n) where d(n) is the desired response (usually based of {f(n)}). The filter is not designed to 
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Figure 1: The adaptive least-squares filter structure. 

handle a particular input. Because it is adaptive, it can adjust to a broadly defined task. 

2 The Adaptive LMS Filter Algorithm 

2.1 Simplified Derivation 

In the length M FIR adaptive filter the coefficients bk(n), k = 1, 2, . . . , M  − 1, at time step n are 
adjusted continuously to minimize a step-by-step squared-error performance index J(n): 

� �2M−1 

J(n) =  e 2(n) = (d(n) − y(n))2 = d(n) − b(k)f(n − k) (1) 
k=0 

J(n) is described by a quadratic surface in the bk(n), and therefore has a single minimum. At each 
iteration we seek to reduce J(n) using the “steepest descent” optimization method, that is we move 
each bk(n) an amount proportional to ∂J(n)/∂b(k). In other words at step n + 1 we modify the 
filter coefficients from the previous step: 

∂J(n)
bk(n + 1)  =  bk(n) − Λ(n) , k = 0, 1, 2, . . . M  − 1 (2)

∂bk(n) 
1D. Rowell December 9, 2008 
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where Λ(n) is an empirically chosen parameter that defines the step size, and hence the rate of 
convergence. (In many applications Λ(n) = Λ, a constant.) From Eq. (1) 

∂J(n) ∂e2(n) ∂e(n)
= = 2e(n) = −2e(n)f(n − k)

∂bk ∂bk ∂bk 

and the adaptive filter algorithm is 

bk(n + 1)  =  bk(n) + Λe(n)f(n − k), k = 0, 1, 2, . . .M  − 1 (3) 

or in matrix form 
b(n + 1)  =  b(n) + Λe(n)f(n), (4) 

where 
b(n) = [b0(n) b1(n) b2(n) · · ·  bM−1]

T 

is a column vector of the filter coefficients, and 

f(n) = [f(n) f(n − 1) f(n − 2) · · ·  f(n − (M − 1))]T 

is a vector of the recent history of the input {f(n)}. 
Equation (3), or (4), defines the fixed-gain FIR adaptive Least-Mean-Square (LMS) filter algo­

rithm. A Direct-Form implementation for a filter length M = 5 is shown in Fig. 2. 
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Figure 2: A Direct-Form LMS adaptive filter with length M = 5.. 

2.2 Expanded Derivation 

For a filter as shown in Fig. 1, the mean-squared-error (MSE) is defined as 

MSE = E e 2(n) = E (d(n) − y(n))2 

= E d2(n) + E y 2(n) − 2E {d(n)y(n)} 

= φdd(0) + φyy(0) − 2φdy(0) (5) 

where E {} is the expected value, φdd(k) and φyy(k) are autocorrelation functions and φdy(k) is the  
cross-correlation function between {d(n)} and {y(n)}. 

The filter output is 
M −1 

y(n) =  bkf(n − k) 
k=0 

and for stationary waveforms, Eq. (5) at time step n reduces to 

M−1 M−1 N−1 

MSE = φdd(0) + bm(n)bk(n)φff  (m − k) − 2 bk(n)φfd(k) (6) 
m=0 k=0 k=0 
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2.2.1 The Optimal FIR Coefficients 

The optimal FIR filter coefficients bopt, k = 0, . . . ,M − 1, that minimize the MSE, are found byk 
setting the derivatives with respect to each of the bk(n)’s equal to zero. From Eq. (6) 

∂ (MSE) 
= 2 

N−1� 

=0m

boptφff (m − k) − 2φfd(k) = 0, k = 0, 1, . . . , N − 1 (7)m∂bk(n) 

which is a set of linear equations in the optimal coefficients bopt 
k , and which in matrix form is written 

Rbopt = P or bopt = R−1P, (8) 

where
 ⎡
⎢⎢⎢⎢⎢⎢

φf f (0) 
φf f (1) 
φf f (2) 
. . . 

φff (1) 
φff (0) 
φff (1) 
. . . 

φff (2) 
φff (1) 
φff (0) 
. . . 

· · · 
· · · 
· · · 

φff (M − 1) 
φff (M − 2) 
φff (M − 3) 
. . . 

φf f (M − 1) φff (M − 2) φff (M − 3) · · · φff (0) 

⎤
⎥⎥⎥⎥⎥⎥

R =
 
 

⎣ ⎦ 

is a Toeplitz matrix, known as the correlation matrix, and 

P = [φfd(0) φfd(1) φfd(2) φfd(M − 1)]T · · · 
is the cross-correlation vector. 

With these definitions the MSE, as expressed in Eq. (6), reduces to 

MSE = φdd(0) + b(n)T Rb(n) − 2PT b(n), (9) 

and the minimum MSE is 
MSEmin = φdd(0) − PT bopt (10) 

2.2.2 The LMS Algorithm 

Assume an update algorithm of the form 

b(n + 1) = b(n) + 
1 
2
Λ(n)S(n) (11) 

where S(n) is a direction vector that will move b(n) toward bopt, and Λ(n) is an empirically chosen 
gain schedule that determines the step-size at each iteration. In particular, with the method of 
steepest descent, let S(n) = −g(n) where 

d(MSE)
g(n) = 

db 

is the gradient vector, and 

∂MSE 
gk(n) = = 2 

1−�M 

∂bk m=0 

bk(n)φff (m − k) − 2φfd(k), k = 0, 1, . . .M − 1. 

from Eq. (6). Then, as above, 
g(n) = 2 [Rb(n) − P] , (12) 

and the LMS algorithm is 

b(n + 1) = b(n) − 
1 
2
Λ(n)g(n) (13) 

= [I − Λ(n)R] b(n) + Λ(n)P (14) 
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where I is the identity matrix. It is interesting to note that if we define 

Δb(n) = bopt − b(n) 

the LMS algorithm becomes 

b(n + 1) = b(n) − Λ(n)RΔb(n) (15) 

and if any bk(n) = bopt 
k , bk(n + 1) = bopt 

k for all subsequent time steps. 
In practice the LMS algorithm does not have P or R available, and we seek an estimator for 

[Rb(n) − P]. The error e(n) is 
M−1 

e(n) = d(n) − y(n) = d(n) − 
� 

b(k)f(n − k) 
k=0 

and therefore 
�

M−1� 
b(k)f(n − j)f(n − k) 

� 

, for j = 0, 1, 2, . . . ,M−1.E {e(n)f(n − j)} = E {d(n)f(n − j)}−E 
k=0 

The individual equations may be collected into vector form 

E {e(n)f(n)} = P − Rb(n) (16) 

and using Eq. (12) the gradient vector can be written 

g(n) = −2E {e(n)f(n)} . (17) 

An unbiased estimate g�(n) of the gradient vector at the nth iteration is simply found from Eq, (17) 
as 

g�(n) = −2e(n)f(n), (18) 

and substituted into Eq, (11) to generate the LMS algorithm 

b(n + 1) = b(n) + Λ(n)e(n)f(n), (19) 

which is identical to that obtained with the simplified derivation in Eq. (4). 

2.3 Convergence Properties 

A full discussion of the convergence properties of the LMS algorithm is beyond the scope of this 
handout The value of the gain constant Λ must be selected with some care. We simply state without 
proof that b(n) will converge to bopt provided 

2
0 < Λ < , for k = 0, 1, 2, . . . ,M − 1 

λk 

where λk is an eigenvalue of the matrix R. Because R is an auto-correlation matrix, its eigenvalues 
are non-negative and 

M−1 

λmax < 
� 

λk = traceR = Mφff (0) = E 
�
f2(n)

� 

k=0 

To ensure stability 
2

Λ < (20)
M.E {f2(n)}

If Λ is too large it will cause the system to overshoot the optimal values for the b(n) and the 
system will become unstable. The convergence rate is dependent on the ratio of the minimum to 
maximum eigenvalues of R. If λmin/λmax ≈ 1, the convergence will be fast, but conversely, if 
λmin/λmax << 1 the convergence will be sluggish, and the filter will not track rapidly changing 
conditions. 
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2.4 Variations on the Basic LMS Algorithm 

2.4.1 Fixed Gain Schedule Implementation 

The LMS algorithm is commonly used with a fixed gain schedule Λ(n) = Λ for two reasons: first in 
order that the filter can respond to varying signal statistics at any time it is important that, Λ(n) 
not be a direct function of n. If Λ(n) 0 as n → ∞, adaptation could not occur. The second →
factor is that the fixed gain LMS algorithm is easy to implement in hardware and software. 

2.4.2 The Normalized MLS Algorithm 

Equation (20) demonstrates that the convergence and stability depend of the signal power. To 
normalize this dependence a modified form of the LMS algorithm, frequently used in practice is 

Λ
b(n + 1) = b(n) + 2 e(n)f(n),	 (21) ||f(n)|| 

which is essentially a variable gain method with 

Λ
Λ(n) = 2 ||f(n)|| 

To avoid numerical problems when the norm of the signal vector is small, a small positive 
constant � is often added 

Λ
Λ(n) = 2� + ||f(n)||

These algorithms are known as normalized MLS, or NMLS, algorithms. 

2.4.3 Smoothed MLS Algorithms 

Because the update algorithm uses an estimator of the gradient vector the filter coefficients will be 
subject to random perturbations even when nominally converged to bopt. Several approaches have 
been used to smooth out these fluctuations: 

(a)	 Use a running average over the last K estimates. 
A FIR filter may be used to provide a smoothed estimate g�(n) of the gradient vector, g�(n), 
for example a fixed length moving average 

1 K−1 

g�(n) = 
� 

g�(n − k).	 (22)
K 

k=0 

The LMS algorithm (Eq. (13)) is then based on the averaged gradient vector eatimate: 

1
b(n + 1) = b(n) − Λ(n)g�(n)

2 

(b)	 Update the coefficients every K steps, using the average. 
A variation on the above is to update the coefficients every N time steps, and compute the 
average of the gradient vector estimates during the intermediate time steps. 

1 N−1 

g�(Nn) = 
� 

g�(nN + k).	 (23)
K 

k=0 

The update equation, applied every N time-steps, is 

1
b((n + 1)N) = b(nN) − Λ(Nn)g�(Nn)

2 
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(c)	 Use a simple IIR filter to smooth the estimate of the gradient vector. 
The noisy estimates of the gradient vector, Eq. (18), may be smoothed with a simple first-
order, unity-gain, low-pass IIR filter with a transfer function 

Hs(z) = 
1 − α 

1 − αz−1 

to produce a smoothed estimate g�(n) of g(n). The difference equation is: 

g�(n) = αg�(n) + (1 − α)g�(n).	 (24) 

The value of α controls the degree of smoothing. If α = 0 then g�(n) = g�(n) and there is no 
smoothing, but as α 1 the contribution from the most recent estimate decreases and the →
smoothing increases. As above, the LMS algorithm (Eq. (13)) is then 

1
b(n + 1) = b(n) − 

2
Λ(n)g�(n) 

2.4.4 Implementations Based on the Sign of the Error 

For hardware implementations, where multiplication operations are computationally expensive, it 
may be possible to use steps that are related to the sign of all or part of the gradient vector estimate, 
for example three possibilities are: 

b(n + 1) = b(n) + Λsgn(e(n))f(n)	 (25) 
b(n + 1) = b(n) + Λe(n)sgn(f(n))	 (26) 
b(n + 1) = b(n) + Λsgn(e(n))sgn(f(n))	 (27) 

where sgn() is the signum function. In the last case numerical multiplication can be eliminated 
completely. Care must be taken to ensure stability and convergence with such reduced complexity 
implementations. 

3	 A MATLAB Demonstration Adaptive Least-Squares Filter 

% ------------------------------------------------------------------------­
 
 
% 2.161 Classroom Example - LSadapt - Adaptive Lleast-squares FIR filter
 
 
% demonstration
 
 
% Usage : 1) Initialization:
 
 
% y = LSadapt(’initial’, Lambda, FIR_N)
 
 
% where Lambda is the convergence rate parameter.
 
 
% FIR_N is the filter length.
 
 
% Example:
 
 
% [y, e] = adaptfir(’initial’, .01, 51);
 
 
% Note: LSadapt returns y = 0 for initialization
 
 
% 2) Filtering:
 
 
% [y, b] = adaptfir(f, d};
 
 
% where f is a single input value,
 
 
% d is the desired input value, and
 
 
% y is the computed output value,
 
 
% b is the coefficient vector after updating.
 
 
%
 
 
% Version: 1.0
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% Author: D. Rowell 12/9/07 
% ------------------------------------------------------------------------­
% 
function [y, bout] = LSadapt(f, d ,FIR_M) 
persistent f_history b lambda M 
% 
% The following is initialization, and is executed once 
% 
if (ischar(f) && strcmp(f,’initial’)) 

lambda = d;
 
 
M = FIR_M;
 
 
f_history = zeros(1,M);
 
 
b = zeros(1,M);
 
 
b(1) = 1;
 
 
y = 0;
 
 

else 
% Update the input history vector: 

for J=M:-1:2 
f_history(J) = f_history(J-1);
 
 

end;
 
 
f_history(1) = f;
 
 

% Perform the convolution 
y = 0; 
for J = 1:M 

y = y + b(J)*f_history(J);
 
 
end;
 
 

% Compute the error and update the filter coefficients for the next iteration 
e = d - y; 
for J = 1:M 

b(J) = b(J) + lambda*e*f_history(J);
 
 
end;
 
 
bout=b;
 
 

end 

4	 	 Application - Suppression of Narrow-band Interference in a 
Wide-band Signal 

In this section we consider an adaptive filter application of suppressing narrow band interference, 
or in terms of correlation functions we assume that the desired signal has a narrow auto-correlation 
function compared to the interfering signal. 

Assume that the input {f(n)} consists of a wide-band signal {s(n)} that is contaminated by a 
narrow-band interference signal {r(n)} so that 

f(n) = s(n) + r(n). 

The filtering task is to suppress r(n) without detailed knowledge of its structure. Consider the 
filter shown in Fig. 3. This is similar to Fig. 1, with the addition of a delay block of Δ time steps 
in front of the filter, and the definition that d(n) = f(n). The overall filtering operation is a little 
unusual in that the error sequence {e(n)} is taken as the output. The FIR filter is used to predict 
the narrow-band component so that y(n) ≈ r(n), which is then subtracted from d(n) = f(n) to 
leave e(n) ≈ s(n). 
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Figure 3: The adaptive least-squares filter structure for narrow-band noise suppression. 

The delay block is known as the decorrelation delay. Its purpose is to remove any cross-
correlation between {d(n)} and the wide-band component of the input to the filter {s(n − Δ)}, so 
that it will not be predicted. In other words it assumes that 

φss(τ) = 0, for τ > Δ.| | 

This least squares structure is similar to a Δ-step linear predictor. It acts to predict the current 
narrow-band (broad auto-correlation) component from the past values, while rejecting uncorrelated 
components in {d(n)} and {f(n − Δ)}. 

If the LMS filter transfer function at time-step n is Hn(z), the overall suppression filter is FIR 
with transfer function H(z): 

H(z) = 
E(z)

= 
F (z) − z−ΔHn(z)F (z) 

F (z) F (z) 

= 1 − z−ΔHn(z) 
= z 0 + 0z−1 + . . . + 0z−(Δ−1) − b0(n)z−Δ − b1(n)z−(Δ+1) + . . . 

. . . − bM−1(n)z−(Δ+M−1) (28) 

that is, a FIR filter of length M + Δ with impulse response h�(k) where 

h�

⎧
⎪ 

⎩
⎨
⎪(k) =
 
 

1 k = 0
 
 
0 1 ≤ k < Δ (29) 

Δ ≤ k ≤ M + Δ − 1−bk−Δ(n) 

and with frequency response
 
 
M+Δ−1 

k=0 

The filter adaptation algorithm is the same as described above, with the addition of the delay Δ, 
that is 

b(n + 1) = b(n) + Λe(n)f(n − Δ)) (31) 

or 
bk(n + 1) = bk(n) + Λe(n)f((n − Δ) − k), k = 0, 1, 2, . . . M − 1. (32) 

4.1 Example 1: Demonstration of Convergence with a Sinusoidal Input 

In the handout MATLAB Examples of Least-Squares FIR Filter Design, example A One-step Linear 
Predictor for a Sinusoidal Input we examined the static least-squares filter design for the case 

H(e

jΩ) = h�(k)e−jkΩ (30)
.
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described by Stearns and Hush for the one-step predictor of a sine wave with lengths M = 2 and 
M = 3. In this first example, we note the similarity of the adaptive filter to the one-step predictor 
and examine the convergence of the filter to the closed-form filter coefficients. The input is a 
noise-free sinusoid � 

2πn
�

f(n) = sin .
12 

The stability of the algorithm is governed by Eq. (20), and since for a sinusoid E 
�
f(n)2

� 
= 0.5 we 

are constrained to 
2 

� 
2 for M = 2 

Λ < < 
M.E {f(n)2} 4/3 for M = 3 

The following MATLAB script was used: 

% Example - Demonstration of convergence with a sinusoidal input 
for J=1:1000 

f(J) = sin(2*pi*J/12); 
end 
% Initialize the filter with M = 2, Delta =1 
% Choose filter gain parameter Lambda = 0.1 
Delta = 1; 
Lambda = 0.1; 
M = 2; 
x = LSadapt(’initial’,Lambda,M); 
% Filter the data 
y = zeros(1,length(f)); 
e = zeros(1,length(f)); 
f_delay = zeros(1,Delta+1); 
% Filter - implement the delay 
for J = 1:length(f) 

for K = Delta+1:-1:2 
f_delay(K) = f_delay(K-1);
 
 

end
 
 
f_delay(1) = f(J);
 
 

% The desired output is f(J), the filter input is the delayed signal. 
[y(J),b_filter] = LSadapt(f_delay(Delta+1),f(J)); 

end; 

The script was modified and run with M = 2 and 3, and with various values of Λ. The convergence 
of the error is demonstrated in Fig. 4. The dependence of the convergence upon M and Λ is clearly 
demonstrated. 

The values reported for the filter coefficients with M = 2 were 

b(0) = 1.73117, b(1) = −1 

which are in agreement with the solution b(0) = 
√

3, and b1 = −1. For M = 3 the values returned 
were 

b(0) = 1.24290, b(1) = −0.15275, b(2) = −0.48916. 

As Stearns and Hush note, there is no unique solution for the coefficients for M = 3, but the 
optimal filter must satisfy the conditions: 

b(0) − b(1) = 
√

3, b(0) + 
√

3b(1) + 2b(2) = 0 

The reported values satisfy these constraints, indicating that the filter has found an optimal solu­
tion. 
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Figure 4: Convergence of predictor error e(n) with filter length M and gain Λ. 

4.2 Example 2: Suppression of a Sinusoid in Noise 

For the second example we look at the rejection of a sinusoid of unknown frequency in white noise. 
This case is extreme in that the signal {s(n)} has an auto-correlation function φss(n) = δ(n), while 
the interference has a periodic auto-correlation. 

The following MATLAB script demonstrates the efficacy of the method. 

% Create the input as white noise with a strong sinusoidal component
 
 
f = randn(1,10000);
 
 
L = length(f);
 
 
y = zeros(1,length(f));
 
 
e = zeros(1,length(f));
 
 
Lambda = .001; Delta = 1; M=15;
 
 
x = LSadapt(’initial’, Lambda, M);
 
 
f_delay = zeros(1,Delta+1);
 
 
for J = 1:L
 
 

f(J) = f(J) + 3*sin(2*pi*J/12);
 
 
for K = Delta+1:-1:2
 
 

f_delay(K) = f_delay(K-1);
 
 
end
 
 
f_delay(1) = f(J);
 
 
[y(J),b] = LSadapt(f_delay(Delta+1),f(J));
 
 
e(J) = f(J) - y(J);
 
 

end; 
w=-pi:2*pi/1000:pi; 
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subplot(1,2,1), plot(w, fftshift(abs(fft(f(L-1000:L)))));
 

xlabel(’Normalized frequency’)
 

ylabel(’Magnitude’)
 

title(’Input spectrum’)
 

subplot(1,2,2), plot(w, fftshift(abs(fft(e(L-1000:L)))));
 

xlabel(’Normalized frequency’)
 

ylabel(’Magnitude’)
 

title(’Output spectrum’)
 


Figure 5 shows the input and output spectra of the last 1000 samples of the data record. 
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Figure 5: Input and output spectra for the filter in Example 2. 

4.3	 Example 3: Frequency Domain Characteristics of an LMS Suppression Fil­
ter 

This example demonstrates the filter characteristics after convergence. The interfering signal is 
comprised of 100 sinusoids with random phase and random frequencies Ω between 0.3 and 0.6. The 
“signal” is white noise. The filter used has M = 31, Δ = 1, and Λ was adjusted to give a reasonable 
convergence rate. The overall system H(z) = 1  − z−ΔHn(z) frequency response magnitude, Eq. 
(30), is then computed and plotted, along with the z-plane pole-zero plot. 

% The frequency domain filter characteristics of an interference 
% suppression filter with finite bandwidth interference 
% 
% Create the interference as a closely packed sum of sinusoids 
% between 0.3pi < Omega < 0.6pi with random frequency and phase 
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phase = 2*pi*rand(1,100);
 
 
freq = 0.3 + 0.3*rand(1,100);
 
 
f = zeros(1,100000);
 
 
for J=1:100000
 
 

f(J) = 0;
 
 
for k = 1:100
 
 

f(J) = f(J) + sin(freq(k)*J + phase(k));
 
 
end
 
 

end
 
 
% The "signal" is white noise 
signal = randn(1,100000); 
f = .005*f + 0.01*signal; 

% Initialize the filter with M = 31 , Delta =1 
% Choose filter gain parameter Lambda = 0.1 
Delta = 1; Lambda = 0.5; M = 31; 
x = LSadapt(’initial’,Lambda, M); 

% Filter the data 
f_delay = zeros(1,Delta+1); 
y = zeros(1,length(f)); 
e = zeros(1,length(f)); 
for J = 1:length(f) 

for K = Delta+1:-1:2 
f_delay(K) = f_delay(K-1);
 
 

end
 
 
f_delay(1) = f(J);
 
 
[y(J),b] = LSadapt(f_delay(Delta+1),f(J));
 
 
e(J) = f(J) - y(J);
 
 

end; 
% Compute the overall filter coefficients 
% H(z) = 1 - z^{-Delta}H_{LMS}(z) 
b_overall = [1 zeros(1,Delta-1) -b]; 

% Find the frequency response 
[H,w] = freqz(b_overall,1); 
zplane(b_overall,1) 

The input and output spectra are shown in Fig. 6, and the filter frequency response magnitude is 
shown in Fig. 7. The adaptive algorithm has clearly generated a notch-filter covering the bandwidth 
of the interference. The pole-zero plot in Fig. 8 shows how the zeros have been placed over the 
spectral region (0.3 < Ω < 0.6) to create the band-reject characteristic.. 

4.4	 Example 4: Suppression of a “Sliding” Sinusoid Superimposed on a Voice 
Signal 

In this example we demonstrate the suppression of a sinusoid with a linearly increasing frequency 
superimposed on a voice signal. The filtering task is to task is to suppress the sinusoid so as to 
enhance the intelligibility of the speech. The male voice signal used in this example was sampled 
at Fs = 22.05 kHz for a duration of approximately 8.5 sec. The interference was a sinusoid 

�
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Fs 2

�� 

r(t) = sin(ψ(t)) = sin t + t
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Figure 6: Input and output spectra from an adaptive suppression filter with interference in the 
band 0.3 < Ω < 0.6. 
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Figure 7: Frequency response magnitude of an adaptive suppression filter with interference in the 
band 0.3 < Ω < 0.6. 
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Figure 8: Pole/zero plot of an adaptive suppression filter with interference in the band 0.3 < Ω < 
0.6. 

where Fs = 22.05 kHz is the sampling frequency. The instantaneous angular frequency ω(t) =  
dψ(t)/dt is therefore 

ω(t) = 2π(50 + 294t) rad/s 

which corresponds to a linear frequency sweep from 50 Hz to approx 2550 Hz over the course of 
the 8.5 second message. In this case the suppression filter must track the changing frequency of 
the sinusoid. 

% Example 2: Suppression of a frequeny modulated sinusoid superimposed on speech. 
% Read the audio file and add the interfering sinusoid 
[f,Fs,Nbits] = wavread(’crash’); 
for J=1:length(f) 

f(J) = f(J) + sin(2*pi*(50+J/150)*J/Fs);
 
end
 
wavplay(f,Fs);
 

% Initialize the filter 
M = 55; Lambda = .01; Delay = 10; 
x = LSadapt(’initial’, Lambda, M); 
y = zeros(1,length(f)); 
e = zeros(1,length(f)); 
b = zeros(length(f),M); 
f_delay = zeros(1,Delay+1); 

% Filter the data 
for J = 1:length(f) 

for K = Delta+1:-1:2 
f_delay(K) = f_delay(K-1);
 

end
 
f_delay(1) = f(J);
 
[y(J),b1] = LSadapt(f_delay(Delta+1),f(J));
 
e(J) = f(J) - y(J);
 
b(J,:) = b1;
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end; 
% 
wavplay(e,Fs); 

The script reads the sound file, adds the interference waveform and plays the file. It then filters 
the file and plays the resulting output. After filtering the sliding sinusoid can only be heard very 
faintly in the background. There is some degradation in the quality of the speech, but it is still 
very intelligible. 

Figs. 9 and 10 show the waveform spectra before and after filtering. Figure 9 clearly shows the 
superposition of the speech spectrum on the pedestal spectrum of the swept sinusoid. The pedestal 
has clearly been removed in Fig. 10. Figure 11 shows the magnitude of the frequency response filter 
as a meshed surface plot, with time as one axis and frequency as the other. The rejection notch is 
clearly visible, and can be seen to move from a low frequency at the beginning of the message to 
approximately 2.5 kHz at the end. 

Input Spectrum 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 
Frequency (Hz) 

Figure 9: Example 4: Input spectrum of a sliding sinusoid superimposed on a speech waveform. 

5 Application - Adaptive System Identification 

An adaptive LMS filter may be used for real-time system identification, and will track slowly varying 
system parameters. Consider the structure shown in Fig. 12. A linear system with an unknown 
impulse response is excited by wide-band excitation f(n), The adaptive, length M FIR filter works 
in parallel with the system, with the same input. Since it is an FIR filter, its impulse response is 
the same as the filter coefficients, that is 

h(m) =  b(m), for m = 0, 1, 2, . . .M  − 1. 

and with the error e(n) defined as the difference between the system and filter outputs, the minimum 
MSE will occur when the filter mimics the system, at which time the estimated system impulse
ĥ(m) response may be taken as the converged filter coefficients. 
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Figure 10: Example 4: Output spectrum from the adaptive least-squares filtering to enhance the 
speech waveform. 

5.1 Example 

Consider a second-order “unknown” system with poles at z1, z2 = Re±jθ, that is with transfer 
function 

1 
H(z) =  ,

1 − 2Rcos(θ)z−1 + R2z−2 

where the radial pole position R varies slowly with time. The following MATLAB script uses 
LSadapt() to estimate the impulse response with 10,000 samples of gaussian white noise as the 
input, while the poles migrate from z1, z2 = 0.8e±jπ/5 to 0.95e±jπ/5 

% Adaptive SysID 
f = randn(1,10000); 

% Initialize the filter with M = 2,  Delta =.8 
% Choose filter gain parameter Lambda = 0.1 
Lambda = 0.01; M = 51;  
x = LSadapt(’initial’,Lambda,M); 

% Define the "unknown" system 
R0 = .8; R1 = 0.95; ctheta = cos(pi/5); 
delR = (R1-R0)/L; 
L = length(f); 
b=zeros(M,L); 
ynminus2 = 0; ynminus1 = 0; 
for J = 1:L 

% Solve the difference equation to determine the system output at this iteration 
R = R0 + delR*(J-1); 
yn = 2*R*ctheta*ynminus1 - R^2*ynminus2 + f(J); 
ynminus2 = ynminus1; 
ynminus1 = y; 
[yout,b(:,J)] = LSadapt(f(J),yn); 

end; 

Figure 13 shows the estimated impulse response, ĥ(m) =  b(m), as the poles approach the unit circle 
during the course of the simulation, demonstrating that the adaptive algorithm is able to follow 
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Figure 11: Meshed surface showing the time dependence the frequency response magnitude. The 
motion of the filter notch is seen as the valley in the response as the interference signal’s frequency 
changes. 
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Figure 12: Adaptive filtering structure for system identification. 
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Figure 13: Estimated impulse response of a second-order system with dynamically changing poles 
using an adaptive LMS filter (length 51) with white noise as the input. 
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