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Lecture 6

B-splines (Uniform and Non-uniform)

6.1 Introduction

The formulation of uniform B-splines can be generalized to accomplish certain objectives.
These include

e Non-uniform parameterization.
o Greater general flexibility.

e Change of one polygon vertex in a Bézier curve or of one data point in a cardinal (or
interpolatory) spline curve changes entire curve (global schemes).

e Remove necessity to increase degree of Bézier curves or construct composite Bézier curves
using previous schemes in order to increase degrees of freedom.

e Obtain a “local” approximation scheme.

The development extends the Bézier curve formulation to a piecewise polynomial curve with
easy continuity control.



6.2 Definition

A parametric non-uniform B-spline curve is defined by

where, P; are n + 1 control points; N, x(u) are piecewise polynomial B-spline basis functions
of order k (or degree k — 1) with n > k — 1.
Therefore n, k are independent, unlike Bézier curves. The parameter u obeys the inequality

to S U S tn—i—k (62)

6.2.1 Knot vector

For open (non-periodic) curves, it is usual to define a set T of non-decreasing real numbers
which is called the knot vector, as follows:

T:{to:tlz"'ztk—l<tk§tk+1§“-§tn<tn+1:"-:tn+k} (6,3)

k equal values n—k+1 internal knots k equal values

At each knot value, the curve P(u) has some degree of discontinuity in its derivatives above
a certain order as we will see later. The total number of knots is n + k£ + 1 which equals the
number of control points in the curve plus the curve’s order.

6.2.2 Properties and definition of basis function N, ;(u)
L. Y% o Nig(u) =1 (partition of unity).
2. Nx(u) > 0 (positivity).
3. Nip(u)=0if u ¢ [t;, t;irx] (local support).

4. Nip(u)is (k — 2) times continuously differentiable at simple knots.
If a knot ¢; is of multiplicity p(< k), ie. if

ti=tjy1 =" =tj1p1 (6.4)

then N, x(u) is (k — p — 1) times continuously differentiable, ie. it is of class C*~+~1.



5. Recursive definition (Cox-de Boor algorithm)

1T ue ft tiva)
Niau) = { 0w [titiv1) (6:5)
u—t; livk —u
Nip(u) = ﬁNi,k—l(U) + ﬁNHLk—l(U) (6.6)
itk—1 — U vk — tit1

(set 2 = 0 above when it occurs)

Properties 1-4 or property 5 by itself (given a known knot vector T) define the B-spline
basis.

6.2.3 FExample: 2" order B-spline basis function

(Piecewise linear case— see Figure 6.1)
k=2CH2=C?2=C"

Ni2(u)

tir ti i1 tige tirs
Figure 6.1: Plot of 2"¢ order B-spline basis functions.

N, 2(u) consists of two piecewise linear polynomials:

tiv1—t;

_tigz—u oy ,
ti+2—ti+1 t7,+1 S u S t7,+2

Nz’ Q(U) =

)

{Lti i <u <t



6.2.4 Ezxample: 3" order B-spline basis function

(Piecewise quadratic case— See Figure 6.2)

k=30t =032 ="

N, 3(t;) consists of three piecewise quadratic polynomials y;(u), y2(u) and y3(u). We want
to find y;(u), y2(u) and y3(u) such that

Figure 6.2: Plot of 3" order B-spline basis function.

Position continuity:

y1(u)

y3(u)

Y2 (u)

Note that

Yi1(tiv1) = y2(tiv1)
ys(tive) = ya(tiv2)

Nig(ti) = Niz(t:) =0.
Nis(tiys) = Njz(tizs) =0.

2
— 1
liy1 — 1

< livs —u )2

B =S =

Livg — tiyo

Al = 5)? + Bs® + 02s(1 — s)

u— 11

tivo — tit1

A
B

(6.7)



at s =0, s =1(u=t;11,u =t;12).
First derivative continuity:

1 1

2C—A)— = 24 (6.12)
Livo — tiy1 tiv1 — 1
1 1
oB-C)——— = 2B — (6.13)
liva — tit1 Livg — tiyo
hence,
1 1 1
A l + ] o E— (6.14)
tivi — b tigo —tip1 Livo — i1
1 1 1
B l + ] o — (6.15)
livo —liv1  livs — liyo Livo — i1
where
A, B = functions(C)
Need one more condition (normalization):
titr or +oo 1
/ Nig(u)du = = (tiyr —t;)
t; or —oo k’
We obtain
A(tiza — i) + B(tiyz — tiz1) + C(tive — tiva) = tiyz — 1 (6.16)
From Equation 6.14 to 6.16, we obtain
tips — 4, tivs — &,
A=A p_28 2 o (6.17)
livo — tivs — tit1
Finally,
Nig(u) = y1(w)Ni1(u) + ya(u) Nip11(u) + y3(u) Nipa(u)
= Nio(u) + PAL A Nit12(u) (6.18)
Livo —1; Livs — i1



6.2.5 FExample: 4" order basis function

(Cubic B-spline case— K = 4 see Figure 6.3)
n =6 — 7 control points
n+k+1=11 knots

Lo t, t g t 5 t.
t, N, , is C N, is C N ,is C tg
t, N, , is C Ny, is C N, is t o
t, N, , is C t .,
N, , is C* N, is C
N, , is C N,, is C
N2:4 is C N, is C
N, , is C N, , is C?
Figure 6.3: Cubic B-spline functions.
From property 1:
Noa(to) + Nia(to) =0 (6.19)
Therefore,
P(ty) = (P1 — Po)Ny4(to) (6.20)
Similarly,
P(tlo) = (Pg — P5)N674(t10) (6.21)



span 2~affected by

N
Pl' PZ’ p\S’\PA
N

span 3 affécted by

— N 7/
~_ _span 1 affected by S~ Py, Py Py P

Po: P1 P, Py N 7

_ - N

/
\ span 4 affected by
\\ /P/3’ P4’ P5’ P6
_— —_— _— - /
u=t 7—t 8—t g—t 10 ,

Figure 6.4: Example of local convex hull property of B-spline curve



Properties:

e Local support (eg. Pg affects span 4 only), see Figure 6.4
i.e. P, affects [t;, t;1x] (k spans)

Convex hull (stronger that Bézier) let u € [t;, t;11], then N;(u) #0forjei—k+1,---,4
(k values)

Z Njr(u) =1, Njp(u) >0

j=i—k+1

Each span is in the convex hull of the k vertices contributing to its definition

e Consequence: k consecutive vertices are collinear — span is a straight line segment

Variation diminishing property as for Bézier curves

Exploit knot multiplicity to make complex curves

6.2.6 Special casen=%k—1

The B-spline curve is also a Bézier curve in this case.

T={to,=ti= =t <ty =tpp1 = =toy_1}

k equal knots k equal knots

6.3 Derivatives

P(u) = Z:OPiNi,k(u) (6.22)
d, = (l{:—l)% (6.24)



6.4 Approaches to design with B-spline curves

Design procedure A

1. Designer chooses knot vector and control points.

2. Designer displays curve and tweaks control points to improve curve.

Design procedure B

1. Designer starts with data points on or near curve.
2. Construct an interpolating/approximating B-spline curve.

3. Display curve and tweak control points to improve curve.

10



6.5 Interpolation of data points with cubic B-splines

Given N data points: P;, i =1,2,---, N, and no other derivative data at the boundaries. The
problem is to construct a cubic B-spline curve which interpolates (precisely matches) these
data points.

Construction of knot vector

Let
ﬁl :0
Ujpr = U + dipr
di+l:‘Pi+l_Pi| 2:17277N_1

d=>d —u=— i=1,2,---,N—1
i=2 d
Remove two knot values us and uy_; from knot vector to obtain proper number of degrees

of freedom (instead of having to prescribe boundary conditions, which could be done if needed)

T={wm=wm=u =u <uz<us<---<uy_o<uy=uUy=uUy=1UuUn}

4 times internal knots=N—4 4 times

knots =n+4+1=(N—4)+4+4=N+4—n=N—1

i=0
n=N-—-1
Require that
N—-1
R(uj) = Y RiBia(u;) =P j=12,---,N (6.26)
i=0

Solve for R; (system is banded).
There are also other more sophisticated ways to choose knot vector and parameterization
attempting to make u proportional to arc length.

11



6.6 Evaluation and subdivision of B-splines

6.6.1 De Boor algorithm for B-spline curve evaluation

t—1t3
ta—t3
ty—1
t4—13
t—1o t—t3
ty—1o ts—t3
ty—t ts—1
tyg—1o t5—t3
t—11 t—1o t—13
t4—t1 t5—t2 t6_t3
ty—t ts—1 te—t
ta—1 t5—1t2 te—t3

Figure 6.5: Diagram of de Boor subdivision algorithm over a cubic spline segment, where
t € [ts, tq].

Evaluation of B-spline curves can be performed as follows (de Boor’s algorithm):

Let u € [t;,t;41) be a particular span. N;(u) #0fori=1—k+1,---,1
Let
PO — P, (6.28)

De Boor’s recursive formula:

P/ =(1-a)P| +a/PI™, i>l—k+2 (6.29)

12



where,

o = ——— (6.30)

= |Pi 1 =P(1)

This algorithm is shown graphically in Figure 6.5. An example of the evaluation of a point
on an cubic (k =4, [ = 3) B-spline curve is shown in Figure 6.6.

Figure 6.6: Evaluation of a point on a B-spline curve with the de Boor algorithm.

The algorithm shown in Figure 6.5 also permits the splitting of the segment into two smaller
segments of the same order:

left polygon: PYPLP}P}
right polygon: P}P?PIPY

13



6.6.2 Knot insertion: Boehm’s algorithm

n n+1
SN = S BN (6.31)
=0 =0
over [ti]=[to, b1, ti41, ] over [ti|=[to,t1,Etir1, ]
1 1 <l—k+1
[k +2<i<]

tivk—1—1;

P,

P, = P,
Figure 6.7: Control polygon of B-spline curve before and after knot insertion in interval [t3, t4].

By repeatedly applying knot insertion algorithm, multiple knots within the knot vector can
be created.

Figure 6.8: Boehm’s algorithm diagram with added knot ¢ in interval [ts,t4].

14



6.7 Tensor product piecewise polynomial surface patches

Let
R(u) = > RiFi(u) A<u<B (6.33)

be 3-D (or 2-D) curve expressed as linear combinations of basis functions Fj(u).
Let this curve sweep a surface by moving and possibly deforming. This can be described
by letting each R, trace a curve

v) = f: a;:Gi(v) C<v<D (6.34)

The resulting surface is a tensor product surface (see Figure 6.9).

=Y > ayF;(u)Gi(v) (u,v) € [A, B] x [C, D] (6.35)
i=0 k=0
v=D
u=A R(u, v) u=B
\% v=C
Pat ch
DI--
(u,v)
C T 7\ |
| | u
A B

Figure 6.9: A tensor product patch.
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Matrix (tensor) form:

R(u,v) = [Fo(u) - Fy(u)][a][Go(v) - - G (0)]"
The basis functions can be:
e Monomials — Ferguson patch

e Hermite — Hermite-Coons patch

Bernstein — Bézier patch

Lagrange — Lagrange patch

Uniform B-splines — Uniform B-spline patch

Non-uniform B-splines — Non-uniform B-spline patch.

16
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6.7.1 FExample: Bézier patch

R(u,v) = i iRiij(u)Bj,m(v) 0<u,v<l1 (6.37)

i=0 j=0

where R;; are the control points creating a control polyhedron (net), see Figure 6.10.

Rss
v R
R 10
00 R,
1
u
0 1
Figure 6.10: A Bézier patch.
Properties:
e Lines of v= v = constant (isoparameter lines) are Bézier curves of degree n with control

points

Q; = i R;;Bj (7). (6.38)

J=0

The boundary isoparameter lines have the same control points as the corresponding
polyhedron points.

The relation between the patch and Bézier net is affinely invariant (translation, rotation,
scaling).

Convex hull.
No known variation diminishing property.

The procedure to create piecewise continuous surfaces with Bézier patches is complex.

17



6.7.2 FExample: B-Spline patch

n m
R(u,v) => > RN (w)Qj(v) n>k—1landm>1-1
=0 =0
k equal knots k equal knots
V:{UOZUIZ":Ul—1<vl§Ul+1§"Svm<vm+1:':Um+l}
l equal knots l equal knots
Properties:

e Obeys same properties as a Bézier patch to which it reduces forn =k —1and m =1—-1
(isoparameter lines, boundaries, affine invariance, convex hull).

e Easy construction of complex piecewise continuous geometries.
e Local control:

1. Ry; affects [w;, uirr] X [vj,v54];
2. Subpatch [u;, ;1] X [v;,v541] affected by R, , where (p,q) € [i —k+1, --- i] X

e Strong convex hull — each subpatch lies in the convex hull of the vertices contributing to
its definition.

18



6.7.3 FExample: Composite Bézier patches

Figure 6.11: Composite Bézier patches.

1. Positional continuity

RY(1,0) = RP(0,v) (6.39)
R{) = RV i=0,1,2,3 (6.40)

2. Tangent plane (or normal) continuity

RP(0,0) x RP(0,0) = Aw)R{Y(L,v) x RIP(L,0) (6.41)

(direction of surface normal continuous for A\(v) > 0)

Since
R?(0,v) = RIV(1,0), (6.42)
use
R?(0,0) = Av) RM(1,0) (6.43)
cubic in v constant cubic in v
to show
R{Y - R{Y = ARy - RYY). (6.44)

Therefore, collinearity of above polyhedron edges is required

19



6.8 Generalization of B-splines to NURBS

The acronym NURBS stands for non-uniform rational B-splines. These functions have the
e Same properties as B-splines, and

e Are capable of representing a wider class of geometries.

6.8.1 Curves and Surface Patches
NURBS curves are defined by

E?:o wiRiNi,k (U)
> im0 wiN; (u)

where weights w; > 0; if all w; = 1, the integral piecewise polynomial spline case is recovered.
This formulation permits exact representation of conics, eq. circle, ellipse, hyperbola.
NURBS surface patches are defined by

Z?OZ] o Wiz Rij Nk (u)Q;,(v)
Z:L:() Z] sz] ( )le( )
where weights w;; > 0. This formulation allows for exact representation of quadrics, tori,

surfaces of revolution and very general free-form surfaces. If all w;; = 1, the integral piecewise
polynomial case is recovered.

R(u) = (6.45)

R(u,v) =

(6.46)

6.8.2 FExample: Representation of a quarter circle as a rational
polynomial

Figure 6.12: Quarter circle.

Consider a quarter circle (see Figure 6.12) described in terms of trigonometric functions by

r = R cos(0)

s
ystin(@)} for0§9§§.

20



Setting t = tan(g) and using basic identities from trigonometry, we can express x and y as
functions of ¢:

x(t) = Rizp
, for0 < ¢t < 1. (6.47)

For the conversion of Equation 6.47 to the Bézier representation, apply

c 1 =2 177 b
B t1] | | =t1]| -2 2 0[] b
Co 1 0 O b2

separately to numerators and denominators to obtain the Bézier form.

6.8.3 Trimmed patches

e R(u,v) is an untrimmed patch in the parametric domain (u,v) € [4, B] x [C, D].

e Describe external loop as a set of edges (ie. curves in parameter space r;(t) = [u;(t;)v;(;)]
— eg. external loop the Figure 6.13 if made up of {ry,rs, r3, ry,r5}, while the internal
loop is made up of curve {rg}.

I's
D . .
Tg Iy
A s
Iy
rs

\\ .

C —+ <
e e

)\ A B

Trimming lines

Figure 6.13: Trimmed surface patch.
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6.9 Comparison of free-form curve/surface representa-
tion methods

Single span/patch

Composite

Hermite

Bézier

Lagrange

Ferguson (monomial or power basis)

Bézier

Cardinal or interpolatory spline

B-spline

Table 6.1: Classification of free-form curve/surface representation.

Property Ferguson | Hermite- | Bézier | Lagrange | Composite | Cardinal
Coons Bézier Spline | B-Splines | NURBS
Easy geometric
representation low med high med high Medium high high
Convex hull no no yes no yes no yes yes
Variation
diminishing * no no yes no yes no yes yes
Easiness for
creation low med med inappr. med high high high
Local yes but
control no no no no complex no yes yes
Approximation
ease med med high low high medium high high
Interpolation high but
ease med med med inappr. med high high high
Generality med med med med med med med high
Popularity ** low low med low med med high very high
Table 6.2: Comparison of curve/surface representation methods.

* Variation diminishing property does not apply to surfaces.
x+ Popularity in industry and STEP/PDES standards.

22




Bibliography

[1] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.
Academic Press, Boston, MA, 3rd edition, 1993.

2] I. D. Faux and M. J. Pratt. Computational Geometry for Design and Manufacture. Ellis
Horwood, Chichester, England, 1981.

[3] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design. A. K. Pe-
ters, Wellesley, MA, 1993. Translated by L. L. Schumaker.

[4] J. Owen. STEP: An Introduction. Information Geometers, Winchester, UK, 1993.
[5] L. A. Piegl and W. Tiller. The NURBS Book. Springer, New York, 1995.

[6] F. Yamaguchi. Curves and Surfaces in Computer Aided Geometric Design. Springer-Verlag,
NY, 1988.

23



