
13.472J/1.128J/2.158J/16.940J

COMPUTATIONAL GEOMETRY

Lectures 4 and 5

N. M. Patrikalakis

Massachusetts Institute of Technology
Cambridge, MA 02139-4307, USA

Copyright c©2003 Massachusetts Institute of Technology

Contents

4 Introduction to Spline Curves 2

4.1 Introduction to parametric spline curves . 2
4.2 Elastic deformation of a beam in bending . 2
4.3 Parametric polynomial curves . 4

4.3.1 Ferguson representation . 4
4.3.2 Hermite-Coons curves . 5
4.3.3 Matrix forms and change of basis . 7
4.3.4 Bézier curves . 7
4.3.5 Bézier surfaces . 17

4.4 Composite curves . 18
4.4.1 Motivation . 18
4.4.2 Lagrange basis . 18
4.4.3 Continuity conditions . 19
4.4.4 Bézier composite curves (splines) . 20
4.4.5 Uniform Cubic B-splines . 21

Bibliography 28

Reading in the Textbook

• Chapter 1, pp.6 - pp.33

1

Lecture 4

Introduction to Spline Curves

4.1 Introduction to parametric spline curves

Parametric formulation

x = x(u), y = y(u), z = z(u) or R = R(u) (vector notation)

Usually applications need a finite range for u (e.g. 0 ≤ u ≤ 1).
For free-form shape creation, representation, and manipulation the parametric representa-

tion is preferrable, see Table 1.2 in textbook. Furthermore, we will use polynomials for the
following reasons:

• Cubic polynomials are good approximations of physical splines. (Historical note: Shape of
a long flexible beam constrained to pass through a set of points → Draftsman’s Splines).

• Parametric polynomial cubic spline curves are the “smoothest” curves passing through a
set of points; (i.e. they minimize the bending strain energy of the beam ∝

∫ L
0 κ2ds).

4.2 Elastic deformation of a beam in bending

Within the Euler beam theory:

R

y

dA

dA
N.A.

y
Fiber

Length ds d

Center of
 curvature

�������
�������
�������
�������

Figure 4.1: Differential segment of an Euler beam.

2

• Plane sections of the beam normal to the neutral axis (N.A.) remain plane and normal
to the neutral axis after deformation.

• Elongation strain of a fiber at distance y above the N.A.:

ε =
(−y + R)dφ − Rdφ

Rdφ
= −

y

R

• The radius of curvature can be related to the differential angle and arc length:

Rdφ = ds ⇒ κ =
1

R
=

dφ

ds

• The stress experienced by a fiber at distance y from the N.A. can be found from Hooke’s
law relating stress and strain.

σ = Eε = −E
y

R

• The bending moment about the N.A. can be calculated by integrating the stress due to
bending times the moment arm over the surface of the cross-section:

M =

∫

A
σydA = −

E

R

∫

A
y2dA = −EI

1

R
= −EI

dφ

ds
= −EIκ.

• For small deflections, the displacement Y = Y (x) of the N.A., the following approxima-
tions can be made:

φ ≈
dY

dx
, ds ≈ dx,

dφ

ds
≈

d2Y

dx2

• Therefore,

−
M

EI
≈

d2Y

dx2
(4.1)

• Consider a beam with simple supports and no distributed loads, as shown in Figure 4.2.

Figure 4.2: Simply supported beam.

Looking at a section of the beam between two supports (Figure 4.3), the bending moment
can be expressed as a linear equation:

M = A0 + A1x (4.2)

where A0 and A1 are the bending moment and shearing force at x = 0 in Figure 4.3.

3

x

A1 M(x)A1A0

Figure 4.3: Section of simply supported beam between pins. The shear force and bending
moment at the ends of the section are illustrated.

• Upon substituting Equation 4.2 into Equation 4.1 and integrating, we get:

φ ∼=
dY

dx
∼= −

1

EI
[A0x + A1

x2

2
] + A2

Y (x) ∼= C0 + C1x + C2x
2 + C3x

3 (cubic)

Therefore, in order to replicate the shape of physical splines, the CAD community developed
shape representation methods based on cubic polynomials.

Generically, polynomials have the following additional advantages:

• easy to store as sequences of coefficients;

• efficient to compute and trace efficiently;

• easy to differentiate, integrate, and adapt to matrix and vector algebra; and

• easy to piece together to construct composite curves with a certain order of continuity, a
feature important in increasing complexity of a curve or surface.

4.3 Parametric polynomial curves

4.3.1 Ferguson representation

In 1963, Ferguson at Boeing developed a polynomial representation of space curves:

R(u) = a0 + a1u + a2u
2 + a3u

3 (4.3)

where 0 ≤ u ≤ 1 by convention. Note there are 12 coefficients, ai, defining the curve R(u).
This representation is also known as the power basis or monomial form.

The coefficients, ai, are difficult to interpret geometrically, so we can express ai in terms of
R(0), R(1), Ṙ(0), and Ṙ(1) (where Ṙ denotes derivative with respect to u):

R(0) = a0

R(1) = a0 + a1 + a2 + a3

Ṙ(0) = a1

Ṙ(1) = a1 + 2a2 + 3a3

4

Solving the above equations yields expression for the coefficients, ai’s, in terms of the
geometric end conditions of the curve.

a0 = R(0)

a1 = Ṙ(0)

a2 = 3[R(1) −R(0)] − 2Ṙ(0) − Ṙ(1)

a3 = 2[R(0) −R(1)] + Ṙ(0) + Ṙ(1)

4.3.2 Hermite-Coons curves

By substituting the coefficients into the Ferguson representation, we can rewrite Equation 4.3
as:

R(u) = R(0)η0(u) + R(1)η1(u) + Ṙ(0)η2(u) + Ṙ(1)η3(u) (4.4)

where

η0(u) = 1 − 3u2 + 2u3

η1(u) = 3u2 − 2u3

η2(u) = u − 2u2 + u3

η3(u) = u3 − u2

The new basis functions, ηi(u), are known as Hermite polynomials or blending functions,
see Figure 4.4. They were first used for 3D curve representation in a computer environment in
the 60’s by the late Steven Coons, an MIT professor, participant in the famous ARPA project
MAC.

0.0 1.0

0.0

1.0
0 1

2

3

Figure 4.4: Plot of Hermite basis functions.

Note that these basis functions, ηi(u), satisfy the following boundary conditions, see Fig-
ure 4.4:

η0(0) = 1, η0(1) = η′0(0) = η′0(1) = 0;

η1(1) = 1, η1(0) = η′1(0) = η′1(1) = 0;

η′2(0) = 1, η2(0) = η′2(1) = η′2(1) = 0;

η′3(1) = 1, η3(0) = η′3(0) = η′3(1) = 0.

These boundary conditions also allow the computation of the cubic Hermite polynomials,
ηi(u), by setting up and solving a system of 16 linear equations in the coefficients of these
polynomials.

5

Geometric Interpretation of Hermite-Coons curves.

If we make the following substitutions:

Ṙ(0) = α0t(0)

Ṙ(1) = α1t(1)

where t(u) is the unit tangent of the curve, the following observations can be made from
Figure 4.5, relating the coefficients α0 and α1 to the shape of the curve:

• α0 ↑, α1 = const ⇒ bias towards t(0)

• α1 ↑, α0 = const ⇒ bias towards t(1)

• α0, α1 ↑ ⇒ increase fullness

• α0, α1 both LARGE ⇒ cusp forms (Ṙ(u∗) = 0) or self-intersection occurs

R(1)t(0)

t(1)R(0)

simultaneously

α0, α1 increasing

α1 constant

α0 increasing

t(1)t(0)

R(1)R(0)

Figure 4.5: Fullness of a Hermite-Coons curve.

Due to the importance of choosing α0 and α1 appropriately, the Hermite-Coons represen-
tation can be difficult for designers to use efficiently, but is much easier to understand than the
Ferguson or monomial form.

6

4.3.3 Matrix forms and change of basis

• Monomial or Power or Ferguson form

R(u) =
[

u3 u2 u 1
]











a3

a2

a1

a0











= U · FM

• Hermite-Coons

R(u) =
[

u3 u2 u 1
]











2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0





















R(0)
R(1)

Ṙ(0)

Ṙ(1)











= U ·MH · FH

Conversion between the two representations is simply a matter of matrix manipulation:

U · FM = U ·MH · FH

Hence,

FM = MH · FH

FH = M−1
H · FM

4.3.4 Bézier curves

Bézier developed a reformulation of Ferguson curves in terms of Bernstein polynomials for the
UNISURF System at Renault in France in 1970. This formulation is expressed mathematically
as follows:

R(u) =
n
∑

i=0

RiBi,n(u) 0 ≤ u ≤ 1

Ri and Bi,n(u) represent polygon vertices and the Bernstein polynomial basis functions respec-
tively. The definition of a Bernstein polynomial is:

Bi,n(u) =

(

n

i

)

ui(1 − u)n−i i = 0, 1, 2, ...n

where

(

n

i

)

=
n!

i!(n − i)!

The polygon joining R0,R1, ...,Rn is called the control polygon.

Examples of Bézier curves:

• n=2: Quadratic Bézier Curves (Parabola), see Figures 4.6 and Figure 4.7

R(u) = R0 (1 − u)2 + R1 2u(1 − u) + R2 u2

=
[

u2 u 1
]







1 −2 1
−2 2 0
1 0 0













R0

R1

R2







7

0.0

0.0 1.0

1.0
i=0

u

Bi,2(u)

i=2

i=1

Figure 4.6: Plot of the quadratic Bernstein basis functions.

u = 1
u = 0

R2

R1

R0

Figure 4.7: Illustration of end conditions for a quadratic Bézier curve.

• n=3: Cubic Bézier Curves, see Figures 4.8 and 4.9

R(u) = R0 (1 − u)3 + R1 3u(1 − u)2 + R2 3u2(1 − u) + R3 u3

=
[

u3 u2 u 1
]











−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0





















R0

R1

R2

R3











• Interpolation of R0, Rn and tangency of curve with polygon at u = 0, 1:

• The Bézier curve approximates and smooths control polygon.

Properties of Bernstein polynomials

1. Positivity Bi,n(u) ≥ 0 in 0 ≤ u ≤ 1

8

0.0

0.0 1.0

1.0

u

i=3
i=2i=1i=0

Bi,3(u)

Figure 4.8: Plot of the cubic Bernstein basis functions.

2. Partition of unity
∑n

i=0 Bi,n(u) = [1 − u + u]n = 1 (by the binomial theorem)

3. Recursion

Bi,n(u) = (1 − u)Bi,n−1(u) + uBi−1,n−1(u)

with Bi,n(u) = 0 for i < 0, i > n

and B0,0(u) = 1

4. Linear Precision Property

u =
n
∑

i=0

i

n
Bi,n(u)

• Conversion of explicit curves to parametric Bézier curves.

• Parametrization of straight lines

y = y(x) → x = u; y = y(u)

5. Degree elevation: The basis functions of degree n can be expressed in terms of those of
degree n + 1 as:

Bi,n(u) =

(

1 −
i

n + 1

)

Bi,n+1(u) +
i + 1

n + 1
Bi+1,n+1(u), i = 0, 1, · · · , n

6. Symmetry Bi,n(u) = Bn−i,n(1 − u)

7. Derivative B ′
i,n(u) = n[Bi−1,n−1(u) − Bi,n−1(u)] where B−1,n−1(u) = Bn,n−1(u) = 0

8. Basis conversion

(for each of the x, y, z, coordinates)

• Ferguson or monomial form:

f(u) =
3
∑

i=0

fiu
i =

[

u3 u2 u 1
]











f3

f2

f1

f0











= U · FM

9

R0

X

R3

R2

R1

R0

R1

R3

R2

R1

R0

R3

R2

R3

R2

R1

R0

X

Figure 4.9: Examples of cubic Bézier curves approximating their control polygons.

• Hermite form:

f(u) =
[

u3 u2 u 1
]

·MH ·











f(0)
f(1)

ḟ(0)

ḟ(1)











= U ·MH · FH

• Bézier form:

f(u) =
[

u3 u2 u 1
]

· MB ·











F0

F1

F2

F3











= U ·MB · FB

• Conversion between forms:

U · FM = U ·MH · FH = U · MB · FB

⇒ FM = MH · FH = MB · FB

or ⇒ FH = M−1
H · FM = M−1

H · MB · FB

etc.

10

Properties of Bézier curve:

1. Geometric conditions at ends

• R(0) = R0; R(1) = Rn

• Ṙ(0) = n(R1 −R0); Ṙ(1) = n(Rn −Rn−1)

• R̈(0) = n(n − 1)[(R2 −R1) − (R1 −R0)]

• R̈(1) = n(n − 1)[(Rn −Rn−1) − (Rn−1 −Rn−2)]
•

κ =
1

ρ
=

|Ṙ × R̈|

|Ṙ|3

2. Curve symmetry

R∗
i = Rn−i ⇐⇒ R∗(u) = R(1 − u), see Figure 4.10

R1 = R∗
2

R2 = R∗
1

R3 = R∗
0

u = 0

u = 1

R0 = R∗
3

Figure 4.10: Bézier curve symmetry

3. Bounding box min(xi) ≤
∑n

i=0 xiBi,n(u) ≤ max(xi), etc, see Figure 4.11. A tighter
bounding box can usually be obtained by axis reorientation. Bounding boxes are useful
in interference and intersection problems in CAD.

4. Geometry invariance properties

(a) Translation:
Recalling that

∑n
i=0 Bi,n(u) = 1, we can translate the whole curve by R0 and trans-

late each control vertex back by −R0 and show that our resulting curve is the same
as the original, see Figure 4.12

R(u) = R0 +
n
∑

i=0

(Ri −R0)Bi,n(u) =
n
∑

i=0

RiBi,n(u)

• Absolute position of origin is unimportant ⇒ “invariance under translation ”.

• Relative position of control vertices is important.

11

min(xi) max(xi)

min(yi)

max(yi)

y

x

Figure 4.11: Bézier curve bounding box

R0

R1

R2

R3

O

Figure 4.12: Geometry of Bézier curves is invariant under translation.

(b) Rotation (using a rotation matrix A):
Let A be a matrix of rotation about an arbitrary point. We can then demonstrate
that the Bézier curve is invariant under rotation:

R(u) = [x(u), y(u), z(u)]

Ri = [xi, yi, zi]

[x′(u), y′(u), z′(u)] = [x(u), y(u), z(u)] ·A

=
n
∑

i=0

[xi, yi, zi]ABi,n(u)

=
n
∑

i=0

[x′
i, y

′
i, z

′
i]Bi,n(u)

• Form of Bézier curve is invariant under rotations

• Curve is easily computable

Therefore, Bézier curves are invariant under translations and rotations and they are easily
computable under such transformations.

5. End points geometric property:

12

• The first and last control points are the endpoints of the curve. In other words,
b0 = R(0) and bn = R(1).

• The curve is tangent to the control polygon at the endpoints. This can be easily
observed by taking the first derivative of a Bézier curve

Ṙ(u) =
dR(u)

du
= n

n−1
∑

i=0

(bi+1 − bi)Bi,n−1(u), 0 ≤ u ≤ 1.

In particular we have Ṙ(0) = n(b1 − b0) and Ṙ(1) = n(bn − bn−1). Equation (4.5)
can be simplified by setting ∆bi = bi+1 − bi:

Ṙ(u) = n
n−1
∑

i=0

∆biBi,n−1(u), 0 ≤ u ≤ 1

The first derivative of a Bézier curve, which is called hodograph, is an another Bézier
curve whose degree is lower than the original curve by one and has control points
∆bi, i = 0, · · · , n − 1. Hodograph is useful in the study of intersection and other
interrogation problems such as singularities and inflection points.

6. Convex hull property

R(u) =
n
∑

i=0

RiBi,n(u); 0 ≤ u ≤ 1

Recall: 0 ≤ Bi,n(u) ≤ 1 and
∑n

i=0 Bi,n(u) = 1.

n=1 The convex hull is the line segment connecting the two vertices, see Figure 4.13

Convex Hull

R1R0

=

Figure 4.13: Convex hull of a linear Bézier curve.

R(u) = (1 − u)R0 + uR1; 0 ≤ u ≤ 1

= R0 + (R1 −R0)(u); 0 ≤ u ≤ 1

n=2

R(u) = R0(1 − u)2 + 2u(1 − u)R1 + u2R2 0 ≤ u ≤ 1

= R0 + 2u(1 − u)(R1 −R0) + u2(R2 −R0)

= R0 + α(R1 −R0) + β(R2 −R0)

Here we have made the substitution α = 2u(1− u) and β = u2 to define an oblique
coordinate system (α, β). With the restriction 0 ≤ u ≤ 1 ⇒ 0 ≤ α, β ≤ 1, and
α + β = 1 − (1 − u)2 ≤ 1, any point on the curve must also be contained in the
triangle defined by the polygon vertices, as shown in Figure 4.14.

13

α + b < 1

R0

R1

R2

α + β = 1

α = 0

β = 0

β = 1

α = 1

β

α

Figure 4.14: Convex hull of a quadratic Bézier curve.

γ

β

R0

R1

R2

R3

α + β + γ = 1

α

Figure 4.15: Convex hull of a 3D space cubic Bézier curve is a tetrahedron.

n=3

R(u) = R0 +α(R1 −R0)+β(R2 −R0)+ γ(R3 −R0) 0 ≤ α, β, γ ≤ 1 for 0 ≤ u ≤ 1

α, β, and γ are the oblique coordinates of a point on the curve. With 0 ≤ α, β, γ ≤ 1,
and α+β+γ = 1−(1−u)3 ≤ 1 the curve is contained in the tetrahedron R0R1R2R3,
see Figure 4.15 or the quadrilateral in Figure 4.16.

In general, the convex hull is the intersection of all the convex sets containing all vertices
or the intersection of the half spaces generated by taking 3 vertices at a time to construct a
plane and having all other vertices on one side. The convex hull can also be conceptualized
at the shape of a rubber band/sheet stretched taut over the polygon vertices. This is
illustrated for the 2D case in Figure 4.16.

The convex hull property is useful in

• Intersection problems:

– Subdivide curves into two curve segments at u = 0.5.

– Compare the convex hulls of the subdivided curves (see Figure 4.17).

– Continue subdivision of intersecting subcurves until the size of their convex hulls
are less than a given tolerance.

14

R0

R1

R2

R3

Figure 4.16: Convex hull of a planar cubic Bézier curve

• Detection of absence of interference.

• Providing the approximate position of curve through simple bounds.

Figure 4.17: Comparison of convex hulls of Bézier curves as a means to detect intersection

7. Variation diminishing property

A polygon can be created by the segments connecting the ordered vertices of a Bézier
curve.

In 2D: The number of intersections of a straight line with a planar Bézier curve is
no greater than the number of intersections of the line with the control polygon. A line
intersecting the convex hull of a planar Bézier curve may intersect the curve, be tangent to
the curve, or not intersect the curve at all. It may not, however, intersect the curve more
times than it intersects the control polygon. This property is illustrated in Figure 4.18.
In 3D: The same relation holds true for a plane.
Results : (a rough interpretation)

• A Bézier curve oscillates less than its polygon.

• The polygon’s segments exaggerate the oscillation of the curve.

This property is important in intersection algorithms and in detecting the “fairness” of
Bézier curves.

15

ImpossiblePossible

Figure 4.18: Variation diminishing property of a cubic Bézier curve

Algorithms for Bézier curves

• Evaluation and subdivision algorithm: A Bézier curve can be evaluated at a specific pa-
rameter value t0 and the curve can be split at that value using the de Casteljau algorithm,
where

bk
i (t0) = (1 − t0)b

k−1
i−1 + t0b

k−1
i , k = 1, 2, . . . , n, i = k, . . . , n (4.5)

is applied recursively to obtain the new control points. The algorithm is illustrated in
Figure 4.19, and has the following properties:

– The values b0
i are the original control points of the curve.

– The value of the curve at parameter value t0 is bn
n.

– The curve can be represented as two curves, with control points (b0
0, b1

1, . . . , bn
n)

and (bn
n, bn−1

n , . . . , b0
n).

• Continuity algorithm: Bézier curves can represent complex curves by increasing the
degree and thus the number of control points. Alternatively, complex curves can be
represented using composite curves, which can be formed by joining several Bézier curves
end to end. If this method is adopted, the continuity between consecutive curves must
be addressed.

One set of continuity conditions are the geometric continuity conditions, designated by
the letter G with an integer exponent. Position continuity, or G0 continuity, requires the
endpoints of the two curves to coincide,

Ra(1) = Rb(0).

The superscripts denote the first and second curves. Tangent continuity, or G1 continuity,
requires G0 continuity and in addition the tangents of the curves to be in the same
direction,

Ṙa(1) = α1t

Ṙb(0) = α2t

16

where t is the common unit tangent vector and α1, α2 are the magnitude of ṙa(1) and
ṙb(0). G1 continuity is important in minimizing stress concentrations in physical solids
and preventing flow separation in fluids.

Curvature continuity, or G2 continuity, requires G1 continuity and in addition the center
of curvature to move continuously past the connection point ,

R̈b(0) =

(

α2

α1

)2

R̈a(1) + µṘa(1).

where µ is an arbitrary constant. G2 continuity is important for aesthetic reasons and
also for preventing fluid flow separation.

More stringent continuity conditions are the parametric continuity conditions, where C k

continuity requires the kth derivative (and all lower derivatives) of each curve to be equal
at the joining point. In other words,

dkRa(1)

dtk
=

dkRb(0)

dtk
.

The C1 and C2 continuity conditions for consecutive segments of a composite degree n

Bézier curve can be stated as

hi+1 (bni − bni−1) = hi (bni+1 − bni) , and (4.6)

bni−1 +
hi+1

hi
(bni−1 − bni−2) = bni+1 +

hi

hi+1
(bni+1 − bni+2) (4.7)

where, for the ith Bézier curve segment parameter t runs over the interval [ti, ti+1],
hi = ti+1 − ti (see Figure 4.20 for the connection of cubic Bézier curve segments).

• Degree elevation: The degree elevation algorithm permits us to increase the degree and
control points of a Bézier curve from n to n+1 without changing the shape of the curve.
The new control points b̄i of the degree n + 1 curve are given by

b̄i =
i

n + 1
bi−1 +

(

1 −
i

n + 1

)

bi, i = 0, . . . , n + 1 (4.8)

where b−1 = bn+1 = 0

ls

4.3.5 Bézier surfaces

A tensor product surface is formed by moving a curve through space while allowing deformations
in that curve. This can be thought of as allowing each control point bi to sweep a curve in
space. If this surface is represented using Bernstein polynomials, a Bézier surface (patch) is
formed, with the following formula:

R(u, v) =
m
∑

i=0

n
∑

j=0

bijBi,m(u)Bj,n(v), 0 ≤ u, v ≤ 1.

17

Here, the set of straight lines drawn between consecutive control points bij is referred to as
the control net. It is easy to see that boundary isoparametric curves (u = 0, u = 1, v = 0
and v = 1) have the same control points as the corresponding boundary points on the net. An
example of a bi-quadratic Bézier surface with its control net can be seen in Figure 4.21. Since
a Bézier surface is a direct extension of univariate Bézier curve to its bivariate form, it inherits
many of the properties of the Bézier curve described before such as:

• Geometry invariance property

• End points geometric property

• Convex hull property

However, no variation diminishing property is known for Bézier surface patch.

4.4 Composite curves

4.4.1 Motivation

• Increase complexity without increasing degree of polynomial.

• Interpolation/ approximation of large arrays of points.

• Avoid problems of high degree polynomials such as oscillation, see Section 4.4.2.

4.4.2 Lagrange basis

The Lagrange form is another basis for curve representation. It is presented here as motivation
for establishing a composite polynomial curve representation of lower order.

Given: (ui, Ri) i = 0, 1, 2, · · · , N , we create an interpolatory curve in terms of:

R(u) =
N
∑

i=0

RiLi,N(u) 0 ≤ u ≤ 1

where Li,N (uj) = δij

and Li,N(u) = ΠN
j=0,j 6=i

(u − uj

ui − uj

)

.

where δij = 1 if i = j and δij = 0 if i 6= j (δij is called the Kronecker delta); ui are parameter
values (eq. accumulated length of the polygon R0R1...Ri) and Ri are data points; Li,N is
a polynomial of degree N . As with any polynomial of degree N , it has up to N − 1 real
extrema. As can be seen in Figure 4.22, Lagrange interpolation may lead to highly oscillatory
approximants.

The Lagrange basis is not frequently used because of oscillation and of the need to use high
degree basis functions for interpolation. This leads to developing methods involving low degree
composite curves (splines).

18

4.4.3 Continuity conditions

See Figure 4.23 for an illustration.

• Position:
R(1)(1) = R(2)(0)

• Tangent:

Ṙ(1)(1) = α1t

Ṙ(2)(0) = α2t

where t is a common unit tangent vector at the interface and α1 and α2 are real constants.

• Curvature:

Ṙ = ṡt where ṡ = |Ṙ|

ṫ = tsṡ = ṡκ · n

R̈ = s̈t + ṡ2κn

Using the above equations, taking Ṙ × R̈ and using t× n = b implies

κb =
Ṙ × R̈

|Ṙ|3

Therefore, if κ, n are continuous → b = t×n is also continuous → κ·b is continuous.
Hence,

Ṙ(1)(1) × R̈(1)(1)

|Ṙ(1)(1)|3
=

Ṙ(2)(0) × R̈(2)(0)

|Ṙ(2)(0)|3

t×
[

R̈(2)(0) −
(α2

α1

)2
R̈(1)(1)

]

= 0

R̈(2)(0) =
(α2

α1

)2
R̈(1)(1) + µṘ(1)(1)

where µ is another real constant.

Order of geometric continuity:

• G0– position continuity,

• G1– unit tangent continuity, and

• G2– center of curvature continuity.

Order of parametric continuity (more restrictive than geometric continuity):

• C0– position continuity,

• C1– first derivative continuity, and

• C2– second derivative continuity.

19

4.4.4 Bézier composite curves (splines)

• Cardinal or interpolatory splines are used for fitting data.

• Bézier composite curves usually used for preliminary design (without fitting)

R(u) =
3
∑

i=0

ui(1 − u)3−iRi 0 ≤ u ≤ 1

• Conditions for position and tangent continuity, see Figure 4.24

– Position (G0)

R
(1)
3 = R

(2)
0

– Tangent (G1)

t =
3

α1

(

R
(1)
3 −R

(1)
2

)

=
3

α2

(

R
(2)
1 −R

(2)
0

)

Hence, R
(1)
3 = R

(2)
0 and R

(1)
2 , R

(2)
1 are collinear.

– Conditions for curvature continuity:

R̈(2)(0) = λ2R̈(1)(1) + µṘ(1)(1)

λ =
α2

α1

Using R̈(1)(1) = 6
(

R
(1)
3 − 2R

(1)
2 + R

(1)
1

)

R
(2)
2 −R

(1)
3 = λ2

(

R
(1)
1 −R

(1)
2

)

+
(

λ2 + 2λ +
µ

2

)(

R
(1)
3 −R

(1)
2

)

These conditions imply coplanarity of points R
(1)
1 , R

(1)
2 , R

(1)
3 , R

(2)
1 , R

(2)
2 .

The design process may involve the following steps:

• Start with one segment.

• For each new segment λ, µ,R3 may be chosen freely for shape creation.

However, such construction may lead to

• not enough freedom for G2 continuity.

• enough freedom for G1 continuity.

If more degrees of freedom are needed, an increase of the degree of the curve is necessary.

20

4.4.5 Uniform Cubic B-splines

Motivation:

• Changing of one polygon vertex of a Bézier curve or one data point of a cardinal or
interpolatory spline affects the curve GLOBALLY.

• Avoid increasing degree of Bézier curve to construct complex composite shapes.

• Develop a LOCAL curve scheme.

Define a uniform, cubic B-spline curve span by:

Ri(u) = ViN0,4(u) + Vi+1N1,4(u) + Vi+2N2,4(u) + Vi+3N3,4(u)

Ri(u) represents the ith span of the composite curve and Ni,4(u) represents the ith blending
function of order 4 (or degree 3). Each span is defined in terms of a local parameter: 0 ≤ u ≤ 1.
Nk,4(u) are degree 3 polynomials defined from continuity conditions. Let us assume:

Nj,4(u) = aj + bju + cju
2 + dju

3 j = 0, · · · , 3

Consider two adjacent spans, as shown in Figure 4.25 with control points Vi shown in
Figure 4.26.

For C2 continuity, the following three vector conditions must hold:

• Ri(1) = Ri+1(0) ⇒

[

N0,4(1) N1,4(1) N2,4(1) N3,4(1)
]











Vi

Vi+1

Vi+2

Vi+3











=

[

N0,4(0) N1,4(0) N2,4(0) N3,4(0)
]











Vi+1

Vi+2

Vi+3

Vi+4











This is valid for every Vi ⇒

N0,4(1) = 0 (4.9)

N1,4(1) = N0,4(0) (4.10)

N2,4(1) = N1,4(0) (4.11)

N3,4(1) = N2,4(0) (4.12)

N3,4(0) = 0 (4.13)

• R′
i(1) = R′

i+1(0) ⇒

N ′
0,4(1) = 0 (4.14)

N ′
1,4(1) = N ′

0,4(0) (4.15)

N ′
2,4(1) = N ′

1,4(0) (4.16)

N ′
3,4(1) = N ′

2,4(0) (4.17)

N ′
3,4(0) = 0 (4.18)

21

• R′′
i (1) = R′′

i+1(0) ⇒

N ′′
0,4(1) = 0 (4.19)

N ′′
1,4(1) = N ′′

0,4(0) (4.20)

N ′′
2,4(1) = N ′′

1,4(0) (4.21)

N ′′
3,4(1) = N ′′

2,4(0) (4.22)

N ′′
3,4(0) = 0 (4.23)

• Also if all four vertices coincide ⇒ the ith span reduces to a point ⇒ Ri(u) = Vi

3
∑

i=0

Ni,4(u) = 1 (4.24)

Solving the above 16 equations 4.9–4.24 yield aj, bj , cj , dj ; j = 0, 1, 2, 3.

[

N0,4(u) N1,4(u) N2,4(u) N3,4(u)
]

=
1

3!

[

1 u u2 u3
]

· MB

=
1

3!

[

1 u u2 u3
]











1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1











Properties:

• Position, derivatives (see Figure 4.26):

Ri(0) =
2

3
Vi+1 +

1

3

(Vi + Vi+2

2

)

Ri(1) =
2

3
Vi+2 +

1

3

(Vi+1 + Vi+3

2

)

R′
i(0) =

1

2

(

Vi+2 −Vi

)

R′
i(1) =

1

2

(

Vi+3 −Vi+1

)

R′′
i (0) =

(

Vi+2 −Vi+1

)

−
(

Vi+1 −Vi

)

R′′
i (1) =

(

Vi+3 −Vi+2

)

−
(

Vi+2 −Vi+1

)

• Local control – one vertex affects only 4 spans.

• Convex hull property – local.

• Variation diminishing property.

• Replication of polygon control of Bézier curves at end points can be achieved by setting

V−1 = 2V0 −V1 (imaginary vertex)

Then R−1(0) =
2

3
V0 +

1

6
(V−1 + V1) = V0

R′
−1(0) =

1

2
(V1 −V−1) = V1 −V0

22

• Interpolation can also be achieved, via the so called cardinal or interpolatory splines,
which involve interpolation of N data points Ri (i = 0, 1, ...N − 1)

2
3Vi+1 + 1

6 (Vi + Vi+2) = Ri

or

Vi + 4Vi+1 + Vi+2 = 6Ri for i = 0, 2, · · ·N − 1

We have N + 2 unknowns so we need two boundary conditions.

To replicate the natural spline boundary conditions, we set R′′(0) = R′′(1) = 0, which
imply zero curvature at the ends. Natural splines minimize the integral of curvature
square and are the smoothest curves that pass through a set of points. We then have
R′′

0(0) = V2−2V1 +V0 = 0. Also we have N −1 spans, N data points and N +2 control
points, V0,V1, ...VN+1 the condition will be

R′′
N−1(0) = VN+1 − 2VN + VN−1 = 0.

Then we can derive the banded matrix to solve the above linear system.

























1 −2 1
1 4 1

1 4 1
1 4 1

. . .

1 4 1
1 −2 1

















































V0

V1

V2

V3
...

VN

VN+1

























= 6

























0
R0

R1

R2
...

RN+1

0

























23

b0
3 =b0

2 =b0
1 =b0

0

b1
0 b2

0

b3
0

t

1-t

t 1-t

t

1-t
b1

3 =b1
2 =b1

1

b2
1

b3
1b2

2

b3
2

b3
3

b0
0

b1
0

b2
0

b3
0

b1
1

b2
1

b3
1

b2
2

b3
2

1−t

t

1−t

1−t

1−t

1−tt

t

t

t

b3=r(t)3

1−t

t

Figure 4.19: The de Casteljau algorithm.

24

bn i-3 bn i+3

bn i-2

bn i+2

bn i-1

bn i+1

bn ih i

::

h i+1

h i
::

h i+1

h i
::

h i+1

Figure 4.20: Continuity conditions.

b20 b21

b22

b10

b12b00

b01

b02

Figure 4.21: A Bézier Surface with Control Net.

25

Exact

Lagrange Approximation

0 5 10 15 20 25 30
−4

−3

−2

−1

0

1

2

3

4

5

6

x

y

y = x^(1/3)

Figure 4.22: Approximation of the function y = x
1

3 using a cubic Lagrange curve.

0 ≤ u2 ≤ 1

0 ≤ u1 ≤ 1

R(2)(u2)

R(1)(u1)

Figure 4.23: Composite curve consisting of two smaller curve segments.

R
(1)
1

R
(1)
2 R

(1)
3 = R

(2)
0

R
(1)
0

R
(2)
3

R
(2)
2

R
(2)
1

Figure 4.24: Continuity between Bézier curves restricts placement of control vertices.

26

0 ≤ ū ≤ 1

0 ≤ u ≤ 1

Ri+1(ū)

Ri(u)

Figure 4.25: Two adjacent curve spans with position, first, and second derivative continuity.

Vi

Vi+1

Vi+2

Ri+1(u)Ri(u)

Vi+4

Vi+3

Figure 4.26: Two spans of a uniform cubic B-spline curve.

27

Bibliography

[1] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide.
Academic Press, Boston, MA, 3rd edition, 1993.

[2] I. D. Faux and M. J. Pratt. Computational Geometry for Design and Manufacture. Ellis
Horwood, Chichester, England, 1981.

[3] J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design. A. K. Pe-
ters, Wellesley, MA, 1993. Translated by L. L. Schumaker.

[4] L. A. Piegl and W. Tiller. The NURBS Book. Springer, New York, 1995.

[5] F. Yamaguchi. Curves and Surfaces in Computer Aided Geometric Design. Springer-Verlag,
NY, 1988.

28

