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Lecture 3

Differential geometry of surfaces

3.1 Definition of surfaces

o Implicit surfaces F(x,y,z) =0
Example: 2—; + %—; + i—; = 1 Ellipsoid, see Figure 3.1.

Figure 3.1: Ellipsoid.

o FExplicit surfaces
If the implicit equation F'(x,y,z) = 0 can be solved for one of the variables as a function
of the other two, we obtain an explicit surface, as shown in Figure 3.2. FExample: 2z =

L(aa? + By?)

e Parametric surfaces x = x(u,v), y=1y(u,v), z = z(u,v)
Here functions z(u, v), y(u,v), z(u,v) have continuous partial derivatives of the r** order,
and the parameters u and v are restricted to some intervals (i.e., u1 < u < ug, v1 < v < v9)
leading to parametric surface patches. This rectangular domain D of u, v is called
parametric space and it is frequently the unit square, see Figure 3.3. If derivatives of the
surface are continuous up to the r* order, the surface is said to be of class r, denoted

cr.
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Figure 3.2: Explicit quadratic surfaces z = %(aa:2 By?).
(o« = =3, 3 =1). (b) Right: Elliptic paraboloid (a« =1, 3

In vector notation:

r =r(u,v)

where = (z,y,2), r(u,v)=(z(u,v),y(w,v),2(u,v))
Example:

r= (u+v,u—v,u’+ 0%
T=u-+v 1
Yy=u—v = eliminate u,v = z = 5(332 + y2) paraboloid
2z =u?+0v?

3.2 Curves on a surface

Let r = r(u,v) be the equation of a surface, defined on a domain D (i.e., u; < u < wug,
v < v < wg). Let () = (u(t),v(t)) be a curve in the parameter plane. Then r = r(u(t), v(t))
is a curve lying on the surface, see Figure 3.3. A tangent vector of curve f((t) is given by
B(t) = (u(t),v(t)) A tangent vector of a curve on a surface is given by:

dr(u(t), v(t))
e (3.1)

By using the chain rule:

dr(u(t),v(t)) Ordu Ordv

p7 = + Sodi r u(t) + ry0(t) (3.2)
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Figure 3.3: The mapping of a curve in 2D parametric space onto a 3D biparametric surface

3.3 First fundamental form (arc length)

Consider a curve on a surface r = r(u(t),v(t)). The arc length of the curve on a surface is
given by

dr d dv
ds = |—
s | g

u
dt = vy 4 vy oo |dt
ldt = a4 rogy

- \/(ruu Fry0) - (Tytt + Ty0)dt

= \/(ru - 1y)du? + 2r,rydudv + (1, - r,,)dv?

= VEdu? 4+ 2Fdudv + Gdv? (3.3)
where

EF = r,r,, F=1ry,r,, G=r, 1, (3.4)
The first fundamental form is defined as

I = dr-dr=(r,du+r,dv) - (r,du+ r,dv)
Edu® 4 2Fdudv + Gdv? (3.5)

E, F, G are called first fundamental form coefficients Note that £ = r, -r, > 0 and G =
ry-r, > 0ifr, # 0 and r, # 0. The first fundamental form [ is positive definite. That is I > 0
and [ = 0 if and only if du = 0 and dv = 0 since

EG — F?

Z dv? and EG — F? = |r, x 1,|*> > 0.

1
I:E(Edu+de)2+

I depends only on the surface and not on the parametrization.
The area of the surface can be derived as follows:
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Figure 3.4: Area of an infinitessimal surface patch.

or
r(ug, v + 0v) — r(ug, vg) =~ %51)

or
r(ug + du, vg) — r(ug, vg) =~ %&L
0A = |rydu X 1,00 = |ry X ry|dudv

Ity X 1|2 = (ry x1y)-(ry X1,)
Using the vector identity (a x b) - (¢ x d) = (a-¢)(b-d) — (a-d)(b- c), we get

Ty, X rv|2 = (ry-ry)(ry-1y) — (ry - rv)2 (3.6)
= EG - F? (3.7)

54 = VEG — F? 6usv, A= / / VEG = F2 dudv (3.8)

Example: For the hyperbolic paraboloid r(u,v) = (u,v,u? —v?), let us derive an expression
for the area of a region of its surface corresponding to a the circle u? +v? < 1 in the parametric
domain D.

We begin by forming expressions for the derivatives of the position vector r and the first
fundamental form coeffients.

r, = (1,0,2u)

r, = (0,1,—2v)
E = ry-r,=1+4u?
F = r, r,=—4uv
G = r, r,=1+40>
Using Equation (3.8), we find
EG —F? = (1+4u®)(1+40?) —16uv? =1+ 4u® +40° > 0

A = // V1 + 4u? 4 4v2dudv
D
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To compute the area, we need to evaluate the double integral over the unit disk u? +v? <1
in the parametric domain D;

A:// V14 4u? + 402 du do.
u2+0v2<1

To perform the integration, let us change variables.
u = rcos(f), v=rsin(f),and du dv = r dr db

= // V1+4r2rdrdf
r<l1

2 1

= / /\/1+4r2rdrd9
o Jo

= Z(6v5-1)

3.4 Tangent plane

Tangent plane at a point r(u,, v,) is the union of tangent vectors of all curves on the surface pass
through r(u,,v,), as shown in Figure 3.5. Since the tangent vector of a curve on a parametric
surface is given by % = ru% + rvfli—g, the tangent plane lies on the plane of the vectors r, and

r,. The equation of the tangent plane is
Tp(u,v) =r(u,v) + Ary(u,v) + pry(u, v) (3.9)

where A and p are real variables parameterizing the plane.

Figure 3.5: The tangent plane at a point on a surface.

3.5 Normal vector

The surface normal is the vector at point r(u,,v,) perpendicular to the tangent plane, see
Figure 3.6. And therefore

Fu X Ty (3.10)

a Ty X 1y

Note that r, and r, are not necessarily perpendicular.



Figure 3.6: The normal to the point on a surface.

A regular (ordinary) point P on the surface is defined as one for which r,, xr, # 0. A point
where r, X r, = 0 is called a singular point. The condition r, X r, # 0 requires that at that
point P the vectors r, and r, do not vanish and have different directions.

Ezample: Elliptic Paraboloid r(u,v) = (u + v,u — v, u? + v?)

r, = (1,1,2u)
r, = (1,-1,2v)

e, e, e,
r, Xr, = 1 1 2u
1 -1 2v

= 2(u-+v)e, +2(u—v)e, —2e, #0

raxrl = 2/(ut0)? 4 (u—v)?+1

= 2v2u? +2v%2 +1 > 0 = Regular !

(2(u+v),2(u —v),—2)
2v2u? 4+ 202 4+ 1

(u+v,u—wv,-1)
V2u? + 202 + 1

at (u,v) =(0,0),N = (0,0,—1)

Ezample: Circular Cone r(u,v) = (usin a cos v, usin asin v, u cos o), see Figure 3.7

r, = (sinacosv,sinasinv,cosa)
r, = (—usinasinv,usinasinv,0)
e, ey e,
ry Xr, = sin a cos v sinasinv cosa

—usinasinv  wsin o cos v 0
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Figure 3.7: Circular cone.

= —uSInQCoS (L COoS Ve, — U SIN (L COS aSinvey + u sin? ae,
At the origin n = 0,
ry,xr, = 0

Therefore, the apex of the cone is a singular point.

3.6 Second fundamental form /] (curvature)

Figure 3.8: Definition of normal curvature

In order to quantify the curvatures of a surface S, we consider a curve C on S which passes
through point P as shown in Figure 3.8. t is the unit tangent vector and n is the unit normal
vector of the curve C' at point P.

dt
k, = kN (3.12)

where k,, is the normal curvature vector normal to the surface, k, is the geodesic curvature
vector tangent to the surface, and k = xn is the curvature vector of the curve C' at point P.
Kkn 1s called the normal curvature of the surface at P in the direction t.



Meusnier’s Theorem : All curves lying on a surface S passing through a given point
p € S with the same tangent line have the same normal curvature at this point.
Since N -t = 0, differentiate w.r.t. s

d
—(N-t) = N -t+N-t
7, N t) +
dt dN dr dN
Z N = —t. —=_2 .27 1
ds ds ds ds (3:13)
Recoginizing that ds - ds = dz? + dy? + dz? = dr - dr, we can rewrite Equation 3.13 as:
dt dr - dN
ds N T dr-dr
. dt
while —-N = xn-N =k,
ds
center of curvature N
P
N
P
center of curvature
(a) (b)
Figure 3.9: Definition of positive normal: (a) kn-N = k,; (b) kn-N = —x,,.
Il = —dr-dN = —(r,du+ r,dv) - (N,du + N,dv)
Ldu? + 2Mdudv + Ndv? (3.14)
where
L = N-ryy, M=N-ry, N=N-r, (3.15)
Therefore the normal curvature is given by
II  L+2MX\+ N)?
g, = 1 o LA 2MAS (3.16)

I E+2F)\+ G2
where \ = g—z.

Suppose P is a point on a surface and () is a point in the neighborhood of P, as in
Figure 3.10. Taylor’s expansion gives

1
r(u+ du,v + dv) = r(u,v) + rydu + rydo + §(ruualu2 + 2rydudv + ry,dv?) + H.O.T. (3.17)
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Figure 3.10: Geometrical illustration of the second fundamental form.

Therefore
PQ =r(u+ du,v + dv) — r(u,v) = rydu + rydv + %(ruudu2 + 2ry,dudv + rvvdv2) + H.O.T.
Thus, the projection of PQ onto N
d=PQ-N = (r,du+rydv) - N + %II
and since r, - N =1, - N = 0, we get
d= %II = %(Ldu2 + 2M dudv + Ndv?)

We want to observe in which situation d is positive and negative. When d =0
Ldu® + 2Mdudv + Ndv* = 0

Solve for du

—M + /(Mdv)?2 — LNdv? —M ++M? - LN
du = 7 = i3 dv

g/

Figure 3.11: (a) Elliptic point; (b) Parabolic point; (¢) Hyperbolic point.

(3.18)

e If M?2—LN < 0, there is no real root. That means there is no intersection between the surface
and its tangent plane except at point P. P is called elliptic point (Figure 3.11(a)).

e If M?— LN = 0, there is a double root. The surface intersects its tangent plane with one line
du = —%dv, which passes through point P. P is called parabolic point (Figure 3.11(b)).

o If M? — LN > 0, there are two roots. The surface intersects its tangent plane with two
= L

(Figure 3.11(c)).

dv, which intersect at point P. P is called hyperbolic point
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3.7 Principal curvatures

The extreme values of x,, can be obtained by evaluating dc’f—; = 0 of Equation 3.16, which gives:

(E+2FA+GX)(NX+ M) — (L +2MX+ NX)(GA+ F) =0 (3.19)
Since

E+2FA+G)X = (E+F)\)+AF+G)N),
L+2MA+NX? = (L+ MM\ + XM+ NN

equation (3.19) can be reduced to
(E+FXN)(M+ NX) = (L+MN(F+GN (3.20)

Thus
_ L+2MX+NX  M+NX L+ M

= = = 3.21
"MTEX9FA+GN  F+Gx  E+FA (3:21)
Therefore x,, satisfies the two simultaneous equations
(L= kpE)du+ (M — Kk, F)dv =0
(M — kpF)du+ (N — £,G)dv =0 (3.22)
These equations can be simultaneously satisfied if and only if
L—k,E M—g,F |
M —k,F N —k,G | 0 (3.23)
where | | denotes the determinant of a matrix. Expanding and defining K and H as
LN — M?
= = .24
EG — F? (3:24)
EN+GL—-2FM
= 3.25
2(EG — F?) ( )
we obtain a quadratic equation for k,, as follows:
k2 —2Hk, + K =0 (3.26)

The values K and H are called Gauss (Gaussian) and mean curvature respectively. The
discriminant D can be expressed as follows:

D = H*-K
(EN +GL —2FM)? — 4(EG — F*)(LN — M?)
4(EG — F?2)?

The denominator is always positive, so we only need to investigate the numerator. The numer-
ator can be written as:

(EN 4+ GL — 2FM)? — 4(EG — F*)(LN — M?)

2
= 4<EGE72F>(EM—FL)2 +[EN - GL - %(EM—FL)}Q =0

11



Thus, D > 0.
Upon solving Equation (3.26) for the extreme values of curvature, we have:

Fmae = H + VH?2 — K (3.27)
Fomin = H — VH?2 — K (3.28)

From Equations (3.27), (3.28), it is readily seen that

K = KmazBmin (3.29)
H — Hmaz;‘/‘:min (330)

From Equation (3.24) (since EG — F? > 0, see Equation 3.6).

K >0 = LN > M? = Elliptic point
K=0 = LN = M? = Parabolic point
K <0 = LN < M? = Hyperbolic point

K>0

Figure 3.12: Curvature map of a torus showing elliptic, parabolic, and hyperbolic regions.
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