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Lecture 21

Object Matching

21.1 Various matching methods

• Moment method

• Principal component

• Contour and silhouette

• New representation

• Localization/registration

• Miscellaneous approaches

21.2 Methods through localization/registration

A basic goal of matching through localization/registration is to find the best rigid body trans-
formation which aligns two objects as closely as possible. The correspondence search between
two objects is a key issue in finding the best transformation for matching. Correspondence
can be established by calculating distinct features of one object and locating the same ones
on the other object. Therefore, the features have to be carefully chosen such that they are
robustly extracted and invariant with respect to various transformations. Among various fea-
tures, intrinsic differential properties are used for matching purposes. They are independent
of parametrization and methods of representation, and only depend on the geometric shape of
the object. Moreover, they are invariant under any rigid body transformations (rotation and
translation).

21.3 Classification of matching methods

Two types of matching can be considered: global and partial. Simply, the global matching
is regarded as the matching for whole objects, while the partial matching is considered as
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the matching of part of objects. Matching problems can be further categorized based on the
availability of correspondence or initial transformation information between two objects and
the application of scaling. The classification of matching problems is summarized in Table
21.1. In the table, acronyms are used for simplification as follows:

• C : Correspondence information is provided.

• I : Initial information on correspondence is provided.

• N : No correspondence information is available.

• P : Partial matching.

• G : Global matching.

• WOS : Without scaling.

• WS : With scaling.

Global matching Partial matching
Criteria

Without scaling With scaling Without scaling With scaling
Correspondence

information
CGWOS CGWS CPWOS CPWS

Initial information IGWOS IGWS IPWOS IPWS
No information NGWOS NGWS NPWOS NPWS

Table 21.1: Classification of matching problems

When correspondence information is provided, which is one of the types CGWOS or CP-
WOS, then a matching problem is simply reduced to calculation of the rigid body trans-
formation [3, 4]. If no correspondence is known, but a good initial approximation for the
transformation is available (IGWOS or IPWOS), then popular iterative schemes such as the
Iterative Closest Point (ICP) algorithm [1] can be employed. However, when no prior clue for
correspondence or transformation is given (NGWOS or NPWOS), the matching problem be-
comes more complicated. In this case, the solution process must provide a means to establish
such correspondence information such as in [2].

Scaling is another factor that needs to be considered separately. If a matching problem
involves scaling effects, then direct comparison of quantitative measures cannot be used any
longer. For the global matching case, a scaling factor can be estimated by the ratio of surface
areas and applied to resolve the scaling transformation. However, when it comes to partial
matching, such area information becomes useless for the scaling factor estimation. When the
correspondence information between two objects is known (CGWS or CPWS), the scaling
factor between the objects can be easily obtained by using the ratio of Euclidean distances
between two sets of corresponding points or areas, or the ratio of the principal curvatures. If
an initial scaling value as well as a good initial approximation is provided (IGWS or IPWS),
the ICP algorithm by Besl [1] or other optimization schemes such as the quasi-Newton method
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[12] can be employed. The problem of NGWS type can be solved by the moment method using
the principal moment of inertia and ratio of areas or volumes. No attempt, however, has been
made to solve the problems of NPWS type. For a more detailed overview, see Ko [6].

21.4 Problem statement

21.4.1 Distance metric

The Euclidean distance between two points p1 and p2 is defined as

de(p1,p2) = |p1 − p2|. (21.1)

We also define the minimum distance between a surface r and a point p as follows:

dsp(r,p) = min{de(p,pi), ∀pi ∈ r}. (21.2)

21.4.2 Distance between a point and a parametric surface

Let us assume that we have a point p and a parametric surface r = r(u, v), 0 ≤ u, v ≤ 1. Then
the squared distance function is defined as follows:

D(u, v) = |p − r(u, v)|2,

= (p − r(u, v)) · (p − r(u, v)). (21.3)

Finding the minimum distance between p and r is reduced to minimizing (21.3) within the
square 0 ≤ u, v ≤ 1. Therefore, the problem needs to be broken up into several sub-problems
which consider the behavior of the distance function at the boundary and in the interior of the
bound [10]. The sub-problems are summarized as follows: Find the minimum distances (1) in
the interior domain, (2) along the boundary curves and (3) from the corner points. Among
those minimum distances, the smallest one is chosen as the minimum distance between the
point p and the surface r. A robust calculation of the minima of the distance function (21.3)
can be achieved by the Interval Projected Polyhedron (IPP) algorithm [13, 10, 14].

21.4.3 Distance metric function

A function can be defined using the squared distance function (21.3) to formulate a matching
problem. Suppose that we have a NURBS surface rB and an object rA represented in discrete
points or surfaces. Then, a matching problem can be stated as finding the rigid body trans-
formation (a translation vector t and a rotation matrix R) so that a global distance metric
function

Φ =
∑

∀p∈rA

dsp(rB, (σRp + t)) (21.4)

becomes minimal, where σ is a scaling factor.
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21.5 Matching problems : CGWOS, CPWOS, CGWS

or CPWS

21.5.1 Resolving the scaling effects

Matching problems of CGWS or CPWS type involve the scaling effects. Therefore, a scaling
factor has to be estimated so that the scaling transformation is performed, before calculating
the rigid body transformation. Since correspondence information between two objects are
available, a scaling factor can be estimated by using the ratio of the principal curvatures at
the corresponding points. After scaling has been resolved, the matching problems of CGWS
or CPWS type are treated as those of CGWOS or CPWOS type.

21.5.2 Rotation and translation

Suppose that we have two 3-tuples mi and ni(i = 1, 2, 3), and the correspondence information
for each point. From these points, a translation vector and a rotation matrix can be calculated.
The translation vector is easily obtained by using the centroids of each 3-tuple. The centroids
cm and cn are given by

cm =
1

3

3
∑

i=1

mi, cn =
1

3

3
∑

i=1

ni, (21.5)

and the difference between cm and cn becomes the translation vector tT = cn − cm. A
rotation matrix consists of three unknown components (the Euler angles). Since the two 3-
tuples provide nine constraints, the rotation matrix may be constructed by using some of the
constraints. But the results could be different if the remaining constraints are used for the
rotation matrix calculation [3]. In order to use all the constraints equally, the least squares
method may be employed [3]. The basic solution by Horn [3] is described below. Suppose that
the translation has been performed. Then what is left is to find the rotation matrix R so that

Φ′ =
3

∑

i=1

|ni − (Rmi)|
2

=
3

∑

i=1

|ni|
2 − 2

3
∑

i=1

ni · (Rmi) +
3

∑

i=1

|Rmi|
2 (21.6)

is minimized. Here, D =
∑3
i=1 ni · (Rmi) has to be maximized to minimize Φ′. The problem

can be solved in the quaternion framework. A quaternion can be considered as a vector with
four components, i.e. a vector part in 3D and a scalar part. A rotation can be equivalently
defined as a unit quaternion q̌ =

[

cos( θ
2
), sin( θ

2
)ax, sin( θ

2
)ay, sin( θ

2
)az

]

which represents a rota-

tion movement around (ax, ay, az) by θ degree. In the quaternion framework, the problem is
reduced to the eigenvalue problem of the 4× 4 matrix H obtained from the correlation matrix
M:

H =











s11 + s22 + s33 s23 − s32 s31 − s13 s12 − s21

s23 − s32 s11 − s22 − s33 s12 + s21 s31 + s13

s31 − s13 s12 + s21 s22 − s11 − s33 s23 + s32

s12 − s21 s31 + s13 s23 + s32 s33 − s22 − s11











, (21.7)
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where

M =
3

∑

i=1

nim
T
i =







s11 s12 s13

s21 s22 s23

s31 s32 s33





 . (21.8)

The eigenvector corresponding to the maximum positive eigenvalue is a quaternion which
minimizes the equation (21.6). An orthonormal rotation matrix R can be recovered from a
quaternion q̌ = [q0, q1, q2, q3] by

R =







q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 + q2
2 − q2

1 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 + q2

3 − q2
1 − q2

2





 . (21.9)

The procedure described above can also be applied to the case where more than three corre-
sponding point pairs are provided.

21.6 Matching problems : IGWOS, IPWOS, IGWS or

IPWS

21.6.1 Iterative Closest Point (ICP) algorithm [1] for IGWOS or
IPWOS

Algorithm

• The point set P with Np points {~pi} from the data shape and the model shape X (with
Nx supporting geometric primitives: points, lines, or triangles) are given.

• The iteration is initialized by setting P0 = P , ~q0 = [1, 0, 0, 0, 0, 0, 0]T and k = 0. The reg-
istration vectors are defined relative to the initial data set P0 so that the final registration
represents the complete transformation. Steps 1,2,3, and 4 are applied until convergence
within a tolerance τ .

a. Compute the closest points: Yk = C(Pk, X).

b. Compute the registration: (~qk, dk) = Q(P0, Yk).

c. Apply the registration: Pk+1 = ~qk(P0).

d. Terminate the iteration when the change in mean-square error falls below a preset
threshold τ > 0 specifying the desired precision of the registration: |dk − dk+1| < τ .

21.6.2 ICP algorithm for scaling effects

When initial information on transformation is provided, the ICP method can be extended to
resolve scaling effects in the matching problem. A scaling factor σ is included in the objective
function (21.4). The scaling transformation is performed at step c in the ICP algorithm. In
this case we have to provide seven initial values (three for translation, three for rotation and
one for scaling).
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21.7 Matching problems : NGWOS or NPWOS

21.7.1 Search method [2]

Chua and Jarvis [2] developed a method to align two objects through registration assuming
no prior knowledge of correspondence between two range data sets. They use a bi-quadratic
polynomial to fit data points in the local area in the least squares sense and calculate the
principal curvatures and Darboux frames. Then they construct a list of sensed data points
based on the fit error. Three seed points are selected to form the list such that the area
of the triangle represented by the seed points becomes maximized to reduce any mismatch
error. Three constraints (curvature, distance and direction) are imposed to sort out possible
corresponding points out of the model data set. Then a list of transformations can be obtained
from the candidate points and an optimum transformation is selected. Various searching
algorithms are described and demonstrated in [2].

21.7.2 KH method

The overall diagram of the KH method [8] is shown in Figure 21.1. The input of the process
includes two objects and three pairs of the Gaussian and the mean curvatures at three different
non-collinear locations. The algorithm yields the minimum value of Φ in the equation (21.4),
and the corresponding rotation matrix R and the translation vector t. Since no scaling effect
is involved, we assume that a scaling factor σ = 1.

Step 10

Step 10 is to select three non-collinear points m1, m2 and m3 on r1 away from the boundary
of r1 where each point has different, Gaussian K and mean curvature H values. At mi, we
have Ki and Hi, where i = 1, 2, 3. Next, subdivide r2 into rational Bézier surface patches
Bj (j = 1, · · · , n) by inserting appropriate knots [5, 11]. Then for each rational Bézier surface
patch Bj, we express Kj and Hj in the bivariate rational Bernstein polynomial basis using
rounded interval arithmetic to formulate the problem. This allows us to use the Interval
Projected Polyhedron (IPP) algorithm [10, 13] for solving nonlinear polynomial systems. For
each pair Ki and Hi, we solve the following system of equations by the IPP technique.

Kj(u, v) = Ki ± δK ,

Hj(u, v) = Hi ± δH , (j = 1, · · · , n and i = 1, 2, 3), (21.10)

where δK and δH represent the uncertainty of estimated curvatures from data points. For each
pair of Ki and Hi, a list of roots Li = (uik, vik), (k = 1, · · · , di) is obtained.

Step 12 (selection process)

A simple pruning search based on the Euclidean distance can be applied to the selection
process. We have three lists of candidate points, Li = (uik, vik), (k = 1, · · · , di) from which
one 3-tuple (n1,n2,n3)

n1 = r2(u1k, v1k), n2 = r2(u2k, v2k), n3 = r2(u3k, v3k), (21.11)
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Find a list of possible correspondences
between two objects.

Sort out 3−tuples (selection process).

Search for the optimal 3−tuple.

10

12

14

START

END

Figure 21.1: A diagram of the KH method

is selected to satisfy the following Euclidean distance constraints simultaneously

||m1 − m2| − |n1 − n2|| < δselect,

||m2 − m3| − |n2 − n3|| < δselect,

||m3 − m1| − |n3 − n1|| < δselect, (21.12)

where δselect is a user-defined tolerance.

Step 14

The correspondence information between each point mi on r1 and ni on r2 is established,
from which a list of translation vectors and a rotation matrices can be obtained. We choose a
translation vector and a rotation matrix which produces a minimum value of equation (21.4)
with s = 1, see Ko et al. [8].

21.8 Matching problems : NGWS

Since global matching is considered, scaling effects in the matching problem of this type can
be easily resolved by using integral properties such as surface areas or volumes. After scaling
transformation, the center of mass and the principal moments are used to find the rigid body
transformation.

8



Figure 21.2: Localized surfaces

Examples are presented to demonstrate the proposed algorithms. Solids bounded by bicu-
bic integral B-spline surface patches A and B are used. Solid A is enclosed in a rectangular
box of 25mm× 23.48mm× 11mm. Here, the height of solid A is 25mm. Figure 21.3 shows a
sequence of operations for matching of the two surfaces using the principal moments of inertia
of input solids. In this example, for clarity, only part of the boundary surfaces of the solids
are displayed. The smaller solid has been translated, rotated, uniformly scaled and reparam-
eterized. In Figure 21.3-(A), two boundary surfaces of the input solids are shown with their
control points. Those two surfaces have similar shape but different numbers of control points
and parametrization. Matching the centroids of the two solids is performed by translating the
small solid by the position difference between the centroids, which is demonstrated in Figure
21.3-(B). The orientation of the largest principal moment of inertia of the solid A is aligned
to that of the largest one of the solid B. Similarly, the remaining two orientations are aligned
based on the values of the principal moments of inertia. After matching the orientations of the
principal moment of inertia, the two solids are aligned in their orientations as shown in Figure
21.3-(C). Figure 21.3-(D) shows that the two solids match after uniform scaling obtained from
the ratio between the volumes of the two solids, 4.651, is applied to the small solid.

21.9 Matching problems : NPWS

21.9.1 Umbilical point method [7]

The correspondence search for matching problems of NGWOS or NPWOS type only deals with
qualitative aspects. Since the ω-plane is not affected by scaling, only qualitative correspondence
can be established in the process. This implies that without a scaling factor applied, a rigid
body transformation cannot be obtained for aligning two surfaces. Therefore, a scaling factor
has to be estimated before any transformation is considered.
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(B)

(D)(C)

(A)

Figure 21.3: Matching via integral properties

Method 1

Let us assume that we have two surfaces r1 and r2, where r1 is an approximated surface of
input data points. The overall procedure is shown in Figure 21.4.

In step 100, all generic umbilical points are located on both surfaces r1 and r2 using the
IPP algorithm [9, 10]. Non-generic umbilical points are not used in this process. If a generic
umbilical point does not exist, this procedure cannot be applied.

In step 102, the correspondence search is performed. The value ω in the complex plane is
scale-independent so that qualitative correspondences can be built from this step. Suppose that
matched pairs are denoted as mk, (k = 1, · · · , nk), where nk is the number of matched pairs.
Then when at least one pair is found, the next step 104 is performed. If no correspondence
is established, then the algorithm stops, implying that the umbilical point method cannot be
used in this case.

Step 104 resolves the scaling transformation. To calculate a scaling factor, the normal
curvatures are evaluated at the corresponding umbilical points on both surfaces r1 and r2.
Then the ratio between them is obtained as a scaling factor. Suppose that a surface r is scaled
with a scaling factor σ, denoted as rσ. Then the normal curvature κ on r is scaled to be κ

σ
on

rσ. Therefore using this relation, the scaling factor can be recovered.
In step 106, after sorting out candidate points, a rigid body transformation is estimated

by using the unit quaternion method [3]. Since the number of matched pairs is more than
three and if at least three pairs survive the selection process, the problem reduces to finding
a rigid body transformation with three known corresponding pairs. Using the methods in [3]
a rotation matrix and a translation vector can be calculated. If the matched pairs fail in the
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START

Calculate umbilics

Correspondence pair search
using w plane

Estimate a scaling factor

Calculate a rigid body 
transformation

Exist?
Transformation match the normal vectors 

for each pair

Match the directions of
lines of curvature

Choose one that 
minimizes 

the distance squared 
objective function

END

mk = (w 1k  , w2k)

mk < 3

Translate r 1 and

and scale r 1

No

Yes

Yes

 No

100

102

104

106

108

110

112

1 and r2for r

Figure 21.4: A diagram for matching using umbilics.
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selection process, then the algorithm goes to step 108 which deals with the matching process
with less than three matched pairs.

In step 108, the orientations of the normal vectors at the corresponding umbilical points
are aligned. First, translate the scaled surface r1 by the difference between the positions of
the matched umbilical points. Then, align the normal vectors at the umbilical points. The
alignment of the normal vectors can be achieved by using the unit quaternion method [3]. Let
us assume that we have two normal vectors n1 and n2 at the corresponding umbilical points
for r1 and r2, respectively. The problem of matching the normal vectors can be stated as:
rotate n1 around the vector Nn = n1×n2

‖n1×n2‖
by an angle θ formed by n1 and n2. The angle θ

can be calculated by θ = arccos(n1,n2), see [3] for details of rotation in the quaternion frame.
In step 110, matching of lines of curvature emanating from an umbilical point is performed.

Depending on the type of the umbilical point, one (lemon) or three (star and monstar) lines
of curvature pass through the umbilical point, and each direction can be determined by the
structure of the cubic terms C(x, y) as summarized in Lecture 20. The directions can be
obtained by calculating angles of the lines of curvature with respect to the local coordinate
system at the umbilical point [9, 10]. Using the angles, vectors which indicate the directions
of lines of curvature at the umbilical point can be obtained. These vectors are calculated at
the matched umbilical points on r1 and r2. Suppose that the number of the direction vectors
on r1 is nv1 and the number of the direction vectors on r2 is nv2. Choose one vector from
r2 and align all of the vectors on r1. This process produces nv1 matched cases among which
one match is chosen that minimizes equation (21.4). This alignment is achieved by rotation
around the normal vector in the tangent plane at the matched umbilical point. Therefore, the
rotation method using the unit quaternion can be used in this process [3].

Method 2

The rigid body transformation can also be obtained by using the KH method described in
Section 4.2 after the scaling transformation is resolved. The algorithm is the same as in Figure
21.4 from step 100 through step 104. After the scaling transformation is resolved, the KH
method can be used to find the rigid body transformation between two objects.

21.9.2 Optimization method [7]

A problem with scaling effects can be solved with an optimization technique. Since there is
no quantitative measure that can be used to estimate a scaling value, the solution scheme has
to resort to an optimum search method which can narrow down the best estimate from the
possible set of candidate solutions.

The KH method can be treated as a function of the scaling factor which yields a value of Φ
in equation (21.4) when a scaling factor is given. Namely, steps 10, 12 and 14 in the diagram
of Figure 21.1 are grouped as a function f such that

f = Φ(σ,R, t), (21.13)

where Φ is the expression given in the equation (21.4), σ the scaling factor, R the rotation
matrix and t the translation vector. Since the rotation matrix and the translation vector are
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obtained from the KH method, we can reduce equation (21.13) to a function of one variable,
or f = Φ(σ). Therefore, when σ is given as input, then f produces the best rigid body
transformation (a translation vector and a rotation matrix) as well as the value of the object
function defined in equation (21.4). When the selection process fails, the tolerance δselect is
iteratively increased so that any triplet can be obtained. When no triplet is found, then the
function f is penalized to yield a very large value.

Using the function f(σ), the problem can be formulated as a one dimensional optimization
problem to find a scaling value which yields the minimum of f . A popular one dimension
optimization scheme, the golden section search [12] can be employed to solve it.

An initial bracket [a, b, c] of the scaling factor is provided which contains an optimum value,
and satisfies f(a) > f(b) and f(c) > f(b). Suppose this bracket is I0. The golden section search
starts with I0 and continues while the size of an interval containing the optimum value σ is
larger than a user defined tolerance which determines the size of the interval.

(A) (B)

Figure 21.5: A matching example of NPWS type

21.10 Matching problems : offset method

21.10.1 Distance function

The minimum distance d from each measured point to an offset of the design surface is defined
as the distance between the points Ri and Qi minus the offset distance h, see Figure 21.6

d(Ri,Qi, h) = |Ri − Qi − hni| (21.14)

where ni is the unit normal vector of P(u, v) at Qi given by

ni =
Pu(u, v) × Pv(u, v)

||Pu(u, v) × Pv(u, v)||
. (21.15)
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 Qi

 Qi + nih

 Ri

P(u, v)

Offset at distance h

Figure 21.6: Definition of distance function.

21.10.2 Objective function

• The localization procedure minimizes the Root Mean Square Distance (RMS) between
the points ri and an offset to P(u, v) at a distance h. The RMS distance is thus given by

RMS =

√

∑m
i=1 d

2(ri,qi, h)

m
(21.16)

with
d(ri,qi, h) = |ri − qi − hni| (21.17)

where qi is the point nearest to the transformed points ri on the offset surface with
distance h from the design surface P(u, v). The position of the point qi varies together
with the motion of the point ri depending on the six motion parameters. Therefore qi
can be viewed as a function depending on the variables ψ, θ, φ, tx, ty, tz, h.

• It is sufficient to minimize the sum of the squared distances instead of RMS distance.
Thus the objective function for the unconstrained minimization is given by

F (ψ, θ, φ, tx, ty, tz, h) =
m

∑

i=1

d2(ri,qi, h). (21.18)

• If we denote x = (ψ, θ, φ, tx, ty, tz, h)
T then the problem can be reduced to searching for

zeros of the gradient vector field ∇F (x), i.e.

∇F (x) = 0. (21.19)

The Newton-Raphson method can be used to solve the nonlinear system (21.19), namely

[H(x)]δx = −g(x)

x(i+1) = x(i) + δx. (21.20)
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where g(x) and [H(x)] are the gradient vector and the Hessian matrix of the objective
function F (x) given by

g(x) = ∇F (21.21)

[H(x)] = ∇2F =
∂2F

∂xi∂xj
(i, j = 1, . . . , 7) (21.22)

where the notation x = {xi} = {ψ, θ, φ, tx, ty, tz, h} is used.

21.10.3 Gradient vector

The minimization of the objective function can be speeded up by supplying the gradient vector
of F at each iteration. Considering that

[C]tx = [C]ty = [C]tz = [C]h = 0 (21.23)

tψ = tθ = tφ = th = 0 (21.24)

(qi)h = 0 (21.25)

(ni)h = 0 (21.26)

hψ = hθ = hφ = htx = hty = htz = 0 (21.27)

hh = 1 (21.28)

the gradient vector of the objective function reduces to

∇F =





































Fψ

Fθ

Fφ

Ftx

Fty

Ftz

Fh





































=
m

∑

i=1





































d2
ψ(ri,qi, h)

d2
θ(ri,qi, h)

d2
φ(ri,qi, h)

d2
tx

(ri,qi, h)

d2
ty

(ri,qi, h)

d2
tz

(ri,qi, h)

d2
h(ri,qi, h)





































=
m

∑

i=1





































2d(ri,qi, h) · dψ(ri,qi, h)

2d(ri,qi, h) · dθ(ri,qi, h)

2d(ri,qi, h) · dφ(ri,qi, h)

2d(ri,qi, h) · dtx(ri,qi, h)

2d(ri,qi, h) · dty(ri,qi, h)

2d(ri,qi, h) · dtz(ri,qi, h)

2d(ri,qi, h) · dh(ri,qi, h)





































(21.29)

=
m

∑

i=1



























2(ri − qi − nih) · ([C]ψRi − (qi)ψ − (ni)ψh)
2(ri − qi − nih) · ([C]θRi − (qi)θ − (ni)θh)
2(ri − qi − nih) · ([C]φRi − (qi)φ − (ni)φh)
2(ri − qi − nih) · (ttx − (qi)tx − (ni)txh)
2(ri − qi − nih) · (tty − (qi)ty − (ni)tyh)
2(ri − qi − nih) · (ttz − (qi)tz + (ni)tzh)

2(ri − qi − nih) · ni



























=
m

∑

i=1



























2di · [C]ψRi

2di · [C]θRi

2di · [C]φRi

2dxi
2dyi
2dzi

−2di · ni



























Unfortunately, the Hessian matrix can not be expressed explicitly. Therefore we use the quasi-
Newton’s method.
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