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Reading in the Textbook
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Lecture 2

Differential geometry of curves

2.1 Definition of curves

2.1.1 Plane curves

• Implicit curves f(x, y) = 0
Example: x2 + y2 = a2

– It is difficult to trace implicit curves.

– It is easy to check if a point lies on the curve.

– Multi-valued and closed curves can be represented.

– It is easy to evaluate tangent line to the curve when the curve has a vertical or near
vertical tangent.

– Axis dependent. (Difficult to transform to another coordinate system).

Example: x3 + y3 = 3xy : Folium of Descartes (see Figure 2.1a)

Let f(x, y) = x3 + y3 − 3xy = 0,

f(0, 0) = 0 ⇒ (x, y) = (0, 0) lies on the curve

Example: If we translate by (1,2) and rotate the axes by θ = atan( 3
4
), the hyperbola

x2

4
− y2

2
= 1, shown in Figure 2.1(b), will become 2x2−72xy+23y2 +140x−20y+50 = 0.

• Explicit curves y = f(x)
One of the variables is expressed in terms of the other.
Example: y = x2

– It is easy to trace explicit curves.

– It is easy to check if a point lies on the curve.

– Multi-valued and closed curves can not be easily represented.

– It is difficult to evaluate tangent line to the curve when the curve has a vertical or
near vertical tangent.
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Figure 2.1: (a) Descartes; (b) Hyperbola.

– Axis dependent. (Difficult to transform to another coordinate system).

Example: If the circle is represented by an explicit equation, it must be divided into
two segments, with y = +

√
r2 − x2 for the upper half and y = −

√
r2 − x2 for the lower

half, see Figure 2.2. This kind of segmentation creates cases which are inconvenient in
computer programming and graphics.

y = + r − x2 2

y = − r − x2 2

x

y

o

Figure 2.2: Description of a circle with an explicit equation.

Note: The derivative of y =
√

x at the origin x = 0 is infinite, see Figure 2.3.

• Parametric curves x = x(t), y = y(t), t1 ≤ t ≤ t2

2D coordinates (x, y) can be expressed as functions of a parameter t.

Example: x = a cos(t), y = a sin(t), 0 ≤ t < 2π
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Figure 2.3: Vertical slopes for explicit curves involve non-polynomial functions.

– It is easy to trace parametric curves.

– It is relatively difficult to check if a point lies on the curve.

– Closed and multi-valued curves are easy to represent.

– It is easy to evaluate tangent line to the curve when the curve has a vertical or near
vertical tangent.

– Axis independent. (Easy to transform to another coordinate system)

Example: Folium of Descartes, see Figure 2.1, can be expressed as:

r(t) =
(

3t
1+t3

, 3t2

1+t3

)

−∞ < t < ∞ ⇒ easy to trace

x(t) = x0 ⇒ solve for t ⇒ plug t into y(t) = y0 ⇒ need to solve a nonlinear equation
to check if a point lies on the curve.

Explicit curve y =
√

x can be expressed as x = t2, y = t (t ≥ 0).

r = (t2, t), ṙ = (2t, 1)

unit tangent vector t =
(2t, 1)√
4t2 + 1

at t = 0, t = (0, 1)

Therefore there is no problem representing a vertical tangent computationally.

2.1.2 Space curves

• Implicit curves

In 3D, a single equation generally represents a surface. For example x2 + y2 + z2 = a2 is
a sphere.
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Thus, the curve appears as the intersection of two surfaces.

F (x, y, z) = 0 ∩ G(x, y, z) = 0

Example: Intersection of the two quadric surfaces z = xy and y2 = zx gives cubic
parabola. (These two surfaces intersect not only along the cubic parabola but also along
the x-axis.)

• Explicit curves

If the implicit equations can be solved for two of the variables in terms of the third, say
for y and z in terms of x, we get

y = y(x), z = z(x)

Each of the equations separately represents a cylinder projecting the curve onto one of
the coordinate planes. Therefore intersection of the two cylinders represents the curve.

Example: Intersection of the two cylinders y = x2, z = x3 gives a cubic parabola.

• Parametric curves x = x(t), y = y(t), z = z(t), t1 ≤ t ≤ t2
The 3D coordinates (x, y, z) of the point can be expressed on functions of parameter t.
Here functions x(t), y(t), z(t) have continuous derivatives of the rth order, and the
parameter t is restricted to some interval called the parameter space (i.e., t1 ≤ t ≤ t2).
In this case the curve is said to be of class r, denoted as C r.

In vector notation:

r = r(t)

where r = (x, y, z), r(t) = (x(t), y(t), z(t))

Example: Cubic parabola

x = t, y = t2, z = t3

Example: Circular helix, see Fig. 2.4.

x = a cos(t), y = a sin(t), z = bt, 0 ≤ t ≤ π

Using v = tan t
2

v = tan
t

2
=

√

1 − cos t

1 + cos t
⇒ v2 =

1 − cos t

1 + cos t

⇒ cos t =
1 − v2

1 + v2
⇒ sin t =

2v

1 + v2

Therefore the following parametrization will give the same circular helix.

r =

(

a
1 − v2

1 + v2
,

2av

1 + v2
, 2btan−1v

)

, 0 ≤ v < ∞
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>> ylabel(’Y’);

>> zlabel(’Z’);

>> print(’circHelix.ps’)

>> plot3(a * cos(u), a * sin(u), b * u)

>> xlabel(’X’);

>>

>> a= 2;

>> b = 3;

>> u = [0 : 6 * pi / 100 : 6 * pi];
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Figure 2.4: Circular helix plotted using MATLAB.
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Figure 2.5: A segment ∆r connecting two point p and q on a parametric curve r(t).

2.2 Arc length

From Figure 2.5, we will derive an expression for the differential arc length ds of a parametric
curve. First, let us express the vector ∆r connecting two points p and q on an arc at parametric
locations t and t + ∆t, respectively, as

∆r = p − q = r(t + ∆t) − r(t).

As p and q become infinitesimally close, the length of the segment connecting the two points
approaches the arc length between the two points along the curve, r(t) and r(t+∆t). Or using
Taylor’s expansion on the norm (length) of the segment ∆r and letting ∆t → 0, we can express
the differential arc length as

∆s ' |∆r| = |r(t + ∆t) − r(t)| = |dr
dt

∆t + O(∆t2)| ' |dr
dt

|∆t.

Thus as ∆t → 0

ds = |dr
dt

|dt = |ṙ|dt.

Definitions

d

dt
≡ ˙

d

ds
≡ ′

Hence the rate of change ds
dt

of the arc length s with respect to the parameter t is

ds

dt
=
√

ẋ2(t) + ẏ2(t) + ż2(t) (2.1)
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ds
dt

is called the parametric speed. It is, by definition, non-negative (s being measured always
in the sense of increasing t).

If the parametric speed does not vary significantly, parameter values t0, t1, · · · , tN corre-
sponding to a uniform increment ∆t = tk − tk−1, will be evenly distributed along the curve, as
illustrated in Figure 2.6.

Parameter Space

t0 t3 t4 t5t1 t2

t0

t1

t2 t3 t4

t5

x

y

t

ds
dt

Figure 2.6: When parametric speed does not vary, parameter values are uniformly spaced along
a parametric curve.

The arc length of a segment of the curve between points r(to) and r(t) can be obtained as
follows:

s(t) =

∫ t

to

√

ẋ2(t) + ẏ2(t) + ż2(t)dt =

∫ t

to

√
ṙ · ṙdt (2.2)

Derivatives of arc length s w.r.t. parameter t and vice versa :

ṡ =
ds

dt
= |ṙ| =

√
ṙ · ṙ (2.3)

s̈ =
dṡ

dt
=

ṙ · r̈√
ṙ · ṙ

(2.4)

···

s =
ds̈

dt
=

(ṙ · ṙ)(ṙ· ···r +r̈ · r̈) − (ṙ · r̈)2

(ṙ · ṙ) 3

2

(2.5)

t′ =
dt

ds
=

1

|ṙ| =
1√
ṙ · ṙ

(2.6)

t′′ =
dt′

ds
= − ṙ · r̈

(ṙ · ṙ)2 (2.7)

t′′′ =
dt′′

ds
= −(r̈ · r̈ + ṙ· ···r)(ṙ · ṙ) − 4(ṙ · r̈)2

(ṙ · ṙ) 7

2

(2.8)

2.3 Tangent vector

The vector r(t+∆t)−r(t) indicates the direction from r(t) to r(t+∆t). If we divide the vector
by ∆t and take the limit as ∆t → 0, then the vector will converge to the finite magnitude
vector ṙ(t).

ṙ(t) is called the tangent vector.
Magnitude of the tangent vector

|ṙ| =
ds

dt
(2.9)
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Unit tangent vector

t =
ṙ

|ṙ| =
dr
dt
ds
dt

=
dr

ds
≡ r′ (2.10)

Definition : A parametric curve is said to be regular if |ṙ(t)| 6= 0 for all t ∈ I. The points
where |ṙ(t)| = 0 are called irregular (singular) points.

Note that at irregular points the parametric speed is zero.
Example: semi-cubical parabola r(t) = (t2, t3), see Figure 2.7

ṙ(t) = (2t, 3t2)

|ṙ(t)| =
√

4t2 + 9t4 =
√

t2(4 + 9t2)

when t = 0, |ṙ(t)| = 0

t>0

t<0

x

y

0

Figure 2.7: A singular point occurs on a semi-cubical parabola in the form of a cusp.

Here are some useful formulae for computing the unit tangent vector:

• 3D Parametric curve r(t)

t = r′ =
dr

ds
=

dr

dt

dt

ds
=

ṙ

|ṙ| =
(ẋ, ẏ, ż)

√

ẋ2 + ẏ2 + ż2

• 2D Implicit curve f(x, y) = 0

t =
(fy,−fx)
√

f2
x + f2

y
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• 2D Explicit curve y = f(x)

t =
(1, ḟ)
√

1 + ḟ2

Example: For a circular helix r(t) = (a cos t, a sin t, bt)

• Parametric speed

ds

dt
= |ṙ(t)| =

√

ẋ2(t) + ẏ2(t) + ż2(t)

ṙ(t) = (−a sin t, a cos t, b)

|ṙ(t)| =
√

a2 + b2 = c = const ⇒
{

The curve is regular and has
good parametrization

• Unit tangent vector

t =
ṙ

|ṙ| = (−a

c
sin t,

a

c
cos t,

b

c
) (2.11)

• Arc length

s(t) =

∫ t

0

|ṙ|dt =

∫ t

0

√

a2 + b2dt = ct (2.12)

• Arc length parametrization

t =
s

c
(2.13)

r(s) = (a cos
s

c
, a sin

s

c
,
bs

c
) (2.14)

check (2.15)

dr

ds
= (−a

c
sin

s

c
,
a

c
cos

s

c
,
b

c
) = t (2.16)

2.4 Normal vector and curvature

Let us consider the second derivative r′′(s), see Figure 2.8.

r′′(s) = lim
∆s→0

r′(s + ∆s) − r′(s)

∆s
(2.17)

As ∆s → 0 r′(s + ∆s) − r′(s) becomes perpendicular to the tangent vector i.e. normal
direction.

Also |r′(s + ∆s) − r′(s)| = ∆θ · 1 = ∆θ as ∆s → 0.

Thus

|r′′(s)| = lim
∆s→0

∆θ

∆s
= lim

∆s→0

∆θ
ρ

∆θ
=

1

ρ
≡ κ (2.18)
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Figure 2.8: Derivation of the normal vector of a curve.

κ is called the curvature. It follows that

κ2 = r′′ · r′′. (2.19)

Consequently

r′′(s) = t′ = κn (2.20)

Thus using equations (2.6) and (2.7), we obtain

κn =
d2r

ds2
=

dt

ds
=

d

ds
(ṙt′) = r̈(t′)2 + ṙt′′ =

(ṙ · ṙ)r̈− (ṙ · r̈)ṙ
(ṙ · ṙ)2 (2.21)

κ2 = (κn) · (κn) =

[

(ṙ · ṙ)r̈ − (ṙ · r̈)ṙ
(ṙ · ṙ)2

]

·
[

(ṙ · ṙ)r̈ − (ṙ · r̈)ṙ
(ṙ · ṙ)2

]

=
(ṙ × r̈) · (ṙ × r̈)

(ṙ · ṙ)3 (2.22)

where the identity (a× b) · (a× b) = (a · a)(b · b) − (a · b)2 is used.
Here are some useful formulae for computing the normal vector and curvature:

• 2D parametric curve r(t), see Figure 2.9

n = ez × t =
(−ẏ, ẋ)
√

ẋ2 + ẏ2
, ez = (0, 0, 1) (2.23)

κ =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)
3

2

(2.24)

• 2D implicit curve f(x, y) = 0

n = ez × t =
(fx, fy)
√

f2
x + f2

y

=
∇f

|∇f | (2.25)

κ = −
fxxf

2
y − 2fxyfxfy + f2

xfyy

(f2
x + f2

y )
3

2

(2.26)
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Figure 2.9: Normal and tangent vectors along a 2D curve.

• 2D Explicit curve y = f(x)

n = ez × t =
(−ẏ, 1)
√

1 + ẏ2
(2.27)

κ =
ÿ

(1 + ẏ2)
3

2

(2.28)

2.5 Binormal vector and torsion

x

y

z

b

n t

r(t)

n t : osculating plane

b n : normal plane

b t : rectifying plane

Figure 2.10: The tangent, normal, and binormal vectors define an orthogonal coordinate system
along a space curve.

Let us define a unit binormal vector, see Figure 2.10

b = t× n (2.29)

We have

t · n = 0 n · b = 0 b · t = 0

b = t× n t = n× b n = b× t

12



The osculating plane can be defined as the plane passing through three consecutive points
on the curve. The rate of change of the osculating plane is expressed by the vector

b′ =
d

ds
(t× n) =

dt

ds
× n + t× dn

ds
= t× n′ (2.30)

where we used the fact that dt
ds

= r′′ = κn.
From n · n = 1 → differentiate w.r.t. s → 2n′ · n = 0 → n′ ⊥ n

Thus n′ is parallel to the rectifying plane (b, t), and n′ can be expressed as a linear com-
bination of b and t.

n′ = µt + τb (2.31)

Substitute (2.31) into (2.30)

b′ = t× (µt + τb) = τt× b = −τb× t = −τn (2.32)

τ is called the torsion.
Consequently

τ = −n · b′ = −n · (t× n)′ =
(r′r′′r′′′)

r′′ · r′′ =
(ṙr̈

···

r)

(ṙ × r̈) · (ṙ× r̈)
(2.33)

Triple scalar product

(abc) = a · (b× c) = (a × b) · c (2.34)

also

(abc) = (bca) = (cab) cyclic permutation (2.35)

Geometrically, (abc) equals to the volume of a parallelepiped having the edge vectors
a, b, c, as in Figure 2.11.

         ax  ay  az
a (bxc)= bx  by  bz
            cx  cy  cz

a
b

c

Figure 2.11: The computation of the volume of a parallelepiped

2.6 Serret-Frenet Formulae

From equations (2.20) and (2.32), we found that

t′ = κn (2.36)

b′ = −τn (2.37)
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How about n′?

n′ = (b × t)′ = b′ × t + b × t′ = −τn× t + b × (κn) = −κt + τb (2.38)

In matrix form we can express the differential equations as







t′

n′

b′






=







0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0













t

n

b






(2.39)

Thus, the curve is completely determined by its curvature and torsion as a function of
parameter s. The equations κ = κ(s), τ = τ(s) are called intrinsic equations. The for-
mulae 2.39 are known as the Serret-Frenet Formulae and describe the motion of moving a
trihedron (t, n, b) along the curve.

Example: Determining the shape of a curve from curvature information and boundary
conditions only.

Given:

κ =
1

R
= const

We find

dt

ds
=

n

R
(2.40)

dn

ds
= − t

R
(2.41)

If we diffrentiate Equation 2.40 with respect to s,

d2t

ds2
=

1

R

dn

ds
. (2.42)

Now, substitute Equation 2.42 into Equation 2.41

d2t

ds2
+

t

R2
= 0. (2.43)

Recognizing that t = dr
ds

, we can change variables from t to r, transforming Equation 2.43
into

d3
r

ds3 + 1

R2

dr
ds

= 0

or

d3

ds3

(

x(s)
y(s)

)

+ 1

R2

d
ds

(

x(s)
y(s)

)

=

(

0
0

)

(2.44)

The solution to Equation 2.44 is

x(s) = C1 + C2 cos

(

s

R

)

+ C3 sin

(

s

R

)

(2.45)

y(s) = C ′

1 + C ′

2 cos

(

s

R

)

+ C ′

3 sin

(

s

R

)

(2.46)
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Assume we are given suitable initial conditions or boundary conditions. For this example,
we will use:

x(0) = R x′(0) = 0 x′′(0) = − 1

R
(2.47)

y(0) = 0 y′(0) = 1 y′′(0) = 0 (2.48)

Solving for the constants in the general solution gives

C1 = C3 = 0 C2 = R (2.49)

C ′

1 = C ′

2 = 0 C ′

3 = R (2.50)

Thus, we find our solution is given by

x(s) = R cos
( s

R

)

(2.51)

y(s) = R sin
( s

R

)

(2.52)

which is precisely a circle of radius R satisfying the conditions (2.47) and (2.48).
Example: A circular helix r = (a cos s

c
, a sin s

c
, bs

c
)

r′(s) = (−a

c
sin

s

c
,
a

c
cos

s

c
,
b

c
)

r′′(s) = (− a

c2
cos

s

c
,− a

c2
sin

s

c
, 0)

r′′′(s) = (
a

c3
sin

s

c
,− a

c3
cos

s

c
, 0)

κ2 = r′′ · r′′ =
a2

c4
(cos2 s

c
+ sin2 s

c
) =

a2

c4
= constant

τ =
(r′r′′r′′′)

r′′ · r′′ =
(r′r′′r′′′)

κ2

=
c4

a2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−a
c
sin s

c
a
c
cos s

c
b
c

− a
c2

cos s
c

− a
c2

sin s
c

0

a
c3

sin s
c

− a
c3

cos s
c

0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
c4

a2

b

c
(
a2

c5
(cos2 s

c
+ sin2 s

c
))

=
b

c2
= constant

Note: when b > 0, it is a right-handed helix;
when b < 0, it is a left-handed helix.
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