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13.49 Homework #6

1. The parameters governing the surface maneuvering of a high-speed container ship are given below for
reference:

m' | 0.00792
I, | 0.000456
zy | —0.05

L | 175.0m
U | 8m/s

Y; | —0.00705
Y | 0.0000
Y, | —0.0116
Y, | 0.00242
Yy | —0.00258
N} | 0.0000
N! | —0.000419
N; | —0.00385
N/ | —0.00222
Nj | 0.00126

Note that the center of vessel mass is located aft of the origin; for this model, the origin coincides with
the center of added mass, so that Y = N; = 0. The nondimensional system with states & = [v',7’]
evolves according to dZ'/dt' = AZ' + B4, where
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The relevant output is yaw rate: C' = [0 1] and D = 0. For the purposes of autopilot design, however,
the transfer function ¢(s)/d(s) is needed; this is a result from Quiz 1.

The following steps create two heading autopilots, using the root-locus and loopshaping techniques. In
addition to the Matlab commands listed below, you will find very useful the convolution function conv ()
which can be used to combine systems, e.g., for numerators, numPC = conv(numP,numC) ;. Also, be
sure that you equalize axis scaling for your plots in the complex-plane, by using axis(’equal’) ;.

(a) Use the Matlab command tf(), or ss(), to create a system model of the open-loop transfer
function P(s)C(s), using the plant above and a PID-type controller:
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The actual numerical values for k,, 74, and 7; are to be found in the next step.

(b) Using 74 = 2 and 7; = 6 as suggested values, use the Matlab command rlocus() and then
rlocfind() to select a controller gain k,, that puts the three slow poles in the following sector:
1) minimum undamped frequency (nondimensional) of 0.3, 2) maximum frequency of 0.5, and 3)
minimum damping ratio 0.7. Give a root locus plot, with your pole locations clearly marked on
top of the trajectories taken as k, varies. You don’t need to show the fourth, fast pole, which will
be quite far to the left.



(c) Apply the k, you selected to P(s)C(s), and then use the Matlab functions feedback() to create
the resulting feedback system, and step() to plot the closed-loop system response to a step input
in desired heading.

(d) Use the Matlab command nyquist () to make a Nyquist plot of P(s)C(s) for your design. Make
a visual estimate of the gain and phase margins.

(e) An alternate approach for controller design of this stable plant is loopshaping: For the open-
loop function L(s) = w./s, where w. = 2.0, invert the plant to come up with a compensator:
C(s) = L(s)/P(s). This design has infinite gain margin and 90 degrees phase margin.

(f) As above, create the feedback system, and plot the closed-loop step response.

(g) The loopshaping control is not quite a PID-controller; how does it differ, and what would L(s)
have to contain to make it a PID?

(h) The controllers you just designed are in nondimensional time coordinates; give the PI, and D
gains for use on a real time scale, for the root-locus design.

2. Following on the LQR example in class, consider the state-space system and LQR design:
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B = 107"
C = [01]

D = 0
Q = C'c
R = p

The plant is an undamped oscillator with undamped poles at +j. Note that the plant output is position
for this problem.

a) What is the control gain K in terms of p? Hints: There are two solutions for p;2; choose the
g P
positive one. Also, the expression for pss is messy; luckily, you won’t need to use it.

(b) Determine the limiting approximations for K with p very small and very large — these are the
cheap control and expensive control problems.

(c) Derive the limiting closed-loop pole locations for p —» 0, giving the frequency and damping ratio
of the Butterworth pattern in terms of p. You can get the characteristic equation for the poles as
det(sI — (A — BK)) = 0, and then make it fit the form s + 2¢w,, + w? = 0.



