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Hydraulic Ram 

Figure 5.32 shows a sketch of a hydraulic actuator of the kind commonly used in heavy earth-
moving machinery. The difference in fluid pressure acting on the two sides of the piston exerts a
force on the rod. As pressure is defined as force per unit area, the power transduction phenomenon
connecting the hydraulic and translational domains is that of a transformer. In general, the piston 
area in the two chambers need not be the same1, and the rate of increase of the volume of one
chamber, Qc1, need not equal the rate of decrease of the volume of the other chamber, Qc2, so two 
transformers may be needed to describe the piston. They are connected to a one-junction on the
translational side (representing the unique piston velocity) as shown in figure 5.33(a). 
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Figure 5.32: Sketch of a hydraulic actuator (a). A cross-sectional view is shown in (b). 

1 For example, the sketch shows a rod protruding from each side of the piston, but single-rod
cylinders are also common; with a single rod, the area on one side of the piston exceeds that on the
other side by the area of the rod. 
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If the piston area in each chamber is the same, then the two transformers may be replaced by a
single equivalent transformer as shown in figure 5.33(b). Any increase in volume of one chamber
equals the decrease in volume of the other and the transformer is connected to a one junction in the
fluid domain (representing the common rate of volume change, Qc). Constitutive equations are then 
as follows. 

F = A (Pc1 - Pc2) (5.69) 

Qc = A v (5.70) 
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Figure 5.33: Bond graph fragments representing power transduction in the hydraulic actuator.
(a): general model for unequal piston areas. (b): special case of equal piston areas. 

Parasitic Dynamics 

Like other power transduction devices, a hydraulic ram also embodies energy storage and
dissipation effects which may need to be modeled. For simplicity, we will assume the hydraulic
fluid to be incompressible (though that is often one of the prominent "parasitic" dynamic
phenomena) and model only the inertial effects due to acceleration of the fluid and the power
dissipation due to its motion through the lines and orifices. On the mechanical side we will model 
the inertia of the piston and rods (considered to be a single rigid body) and the friction due to the
sliding seals, described for simplicity as a single linear friction element (though in reality, a
significant component of the dissipative behavior is likely to resemble dry friction). 

Friction due to flow in a pipe was considered in Chapter 4. A crude model of the inertial effects 
due to acceleration of the fluid may be derived as follows. Consider an incompressible fluid
moving in a pipe of uniform cross-sectional area, Ap. The mass, m, of the "slug" of fluid between 
two cross sections separated by a distance l is determined by the dimensions of the pipe and the 
density, ρ. 

m = ρlAp (5.71) 

Considerable simplification is obtained by assuming that the fluid flow velocity has the same value,
v, at all points. That velocity is determined by the volumetric flow rate, Q, divided by the cross
sectional area. 

v = Q/Ap (5.72) 

Given these assumptions, the kinetic co-energy of the moving fluid is: 
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* m ρlAp Q2 ρl 
Ek = 2  v2 = 2 Ap2 = Ap Q2 (5.73) 

Thus, by analogy with a rigid body in translation, the energy stored in the moving fluid may be
described by an ideal inertia, characterized by a linear relation between a flow, Q, and a generalized 
momentum, Γ, termed pressure momentum. 

Γ 
Q = (5.74)I 

The parameter I = ρl/Ap is the inertance of the fluid, determined by the geometric and material 
properties of the pipe and the fluid. From the fundamental definition of generalized momentum, the
pressure difference accelerating the fluid is the time derivative of the pressure momentum. 

∆P = dΓ/dt (5.75) 

Thus pressure difference is proportional to the rate of change of fluid flow rate. 

ρl dQ
∆P = Ap dt (5.76) 

A bond graph of the complete system is shown in figure 5.34(a). For the purpose of this example,
it has been assumed that the supply line is connected to a power source at constant pressure, P1, the 
return line to a sump at constant pressure, P2, (e.g. atmospheric pressure) and that the mechanical 
load is a constant force, F. 

We may analyze this system by assigning causality. After assigning the required causality to the
source elements, we are free to assign integral causality to one of the energy storage elements
(arbitrarily chosen in figure 5.34(b) to be the translational inertia). Propagating the causal
consequences of that choice through the graph completes the causality assignment. 

Causality assignment reveals that two of the three inertias are dependent energy-storage elements.
The velocity of the piston determines the flow rate in the fluid lines and a single variable is
sufficient to characterize the kinetic energy stored in both the translating masses and the moving
fluid. In effect, the piston and rods and the fluid in the lines have been described as a single "rigid
body" even though the fluid in the lines would hardly be considered rigid in the usual sense of the
word. 
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Figure 5.34: (a) Bond graph of a model of the hydraulic actuator including parasitic effects. (b)
Bond graph with causality assigned. 

The parasitic fluid elements may be transformed into the translational domain. The fluid inertias are 
equivalent to translational masses. Combining equations 5.69, 5.70 and 5.76 the effective mass due
to each fluid line is 

meff = A2I = A2ρl/Ap (5.77) 

The fluid resistors are equivalent to linear translational friction elements. The effective friction 
coefficient due to each fluid line is 

beff = A2R (5.78) 
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Figure 5.35: Bond graph of figure 5.34 with (a) parasitic fluid elements transformed into the
translational domain and (b) inertial and dissipative elements combined. 

When the parasitic fluid elements are transformed into the translational domain it becomes clear that
all of the parasitic elements are connected to a single one-junction as shown in figure 5.35(a). The 
compatibility equation associated with the one-junction means that forces sum at the one-junction.
As a result, the parasitic elements may be combined as shown in figure 5.35(b) into a single
effective inertia with an apparent mass of 

mapp = m + A2I1 + A2I2 (5.79) 

and a single effective friction element with an apparent friction coefficient of 

bapp = b + A2R1 + A2R2 (5.80) 


