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Causality and Model Formulation 

Causal considerations can be extremely helpful at the stage of formulating a model because they 
can identify the consequences of particular choices. Consider the following example. 

Two large, identical electrical capacitors, initially charged to different voltages, are to be 
connected together by two bars of copper as shown conceptually in the figure 4.30. This system 
would be a reasonable laboratory simulation of one of the problems of switching in an electrical 
power system.  The copper bars are large, several square centimeters in cross sectional area.  We 
wish to formulate the simplest possible model which is competent to describe the events that 
happen as the contact is closed. 

The simplest model for this system would appear to be two capacitors and to keep things simple 
we may assume they are ideal.  The resistance of the connector would appear to be negligible. 
Ignoring surface contact phenomena, the resistance of a conductor is the product of resistivity 
and length divided by cross-sectional area 

R = ρl/A (4.116) 

where R is resistance, ρ is resistivity, l is length and A is area. Copper is an excellent conductor; 
the resistivity of drawn copper is listed as 1.724 µΩ-cm.  Even if the copper bar is tens of 
centimeters long, its resistance will be measured in micro-ohms. 

Figure 4.30: Conceptual sketch of a capacitor and switch system. 

When the switch is closed the two capacitors share a common voltage, which implies that their 
connection should be modeled as a zero-junction.  As a first step in thinking about this model it 
is useful to assign causality. As a result, without deriving equations (admittedly a simple enough 
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task in this case) it is clear that the two capacitors are not independent; assign either capacitor 
integral causality and, because of the zero-junction, the other must have derivative causality as 
shown in figure 4.31. 

Does this make physical sense?  Yes. Given the capacitance of both capacitors, a knowledge of 
the energy stored in one is sufficient to determine its charge or voltage; the voltage is the same 
for both capacitors, hence the energy stored in the second capacitor can be computed.  Therefore 
only one state variable is needed to characterize the energetic state of this system. 

0C C 

Figure 4.31: Model of two capacitors connected. 

Simple though this system is, there is plenty of room for confusion: before connection the 
charges on the two capacitors could be specified independently; afterwards, our model says they 
cannot. Do we need two initial conditions or one? 

The confusion arises because we have two structurally different models for the system before 
and after connection. That is, different mathematical operations will be used to describe the 
capacitors in the two different situations.  This is easily seen by comparing the causality of the 
capacitors in the two situations. A model of the unconnected capacitors would be as shown in 
figure 4.32. By assumption, no current may flow from the capacitors, so this boundary condition 
is modeled by a flow source imposing zero flow on the capacitor.  Before connection, each of the 
two capacitors is independent and we are free to assign integral causality to each.   

C CS f : 0 0 : S f 

Figure 4.32: Model of the two unconnected capacitors. 

There is nothing wrong with using two structurally different models to describe different 
operating conditions for a system, though care must be taken to ensure that the models are 
mutually consistent and do not contradict each other.  Is there some contradiction or 
inconsistency here?  No. In the absence of charge leakage, the total charge in the system must be 
the same before and after connection.  Using obvious subscripts: 

(q1 + q2)before = (q1 + q2)after (4.117) 

(Ce1 + Ce2)before = (Ce1 + Ce2)after = 2Ceafter (4.118) 

Thus the two models may be made mutually consistent by deriving the single initial condition for 
the model after connection from the state of the model just before connection. 

eafter = ⎛⎜⎝

e1 + e2 

2

⎞⎟⎠
before

 (4.119) 


However, if we attempt to concatenate the two pieces of the model valid before connection 
(figure 4.32) to obtain a model for the same two capacitors after connection (figure 4.31) we 



Integrated Modeling of Physical System Dynamics 
© Neville Hogan 1994 page 3 

discover a "causal conflict". This "causal conflict" means that the pieces cannot just be 
assembled, the entire model for the coupled system has to be reformulated; new equations have 
to be written. In this case, the new equations require a different number of state variables than 
the old. But you don't have to work out the equations to see this; it is evident from the change of 
causal form for one of the capacitors from integral causality to derivative causality.  

In this case we were asked for a model to describe the events that happen as the contact is closed.  
But if we want to describe the events at switch closure, we have a problem: How do we reconcile 
the different descriptions in the two regimes? 

The key to understanding the dynamics of an energetic system is to keep track of energy.  In this 
linear system, energy is numerically equal to co-energy.  Before contact: 

* 1Ep before = 2  C(e12 + e22)before (4.120) 

After contact: 

* 1Ep after = 2  C(e12 + e22)after = C⎛⎜⎝
e1 + e2 

2

⎞⎟⎠

2 

(4.121)before 

Therefore: 

* * ⎛⎜⎝Ep before - Ep after = C
e1 e2 

-2 2 
⎞⎟⎠


2 
≥ 0 (4.122) 


Energy is lost during switch closure. To model this phenomenon we must include at least one 
dissipative element1, however small. 

The point to be taken here is that by considering causality we uncover an aspect of the model 
which we may want to modify.  It is important to stress that "causal conflicts" are not errors.  
They simply spell out consequences of modelling assumptions which may otherwise be obscure.  
Think of them as waving a banner which reads "Are you sure you really meant your model to 
have this property?" 

Junction Structure 

Suppose we decide to include a dissipator. The simplest model we can assemble will include 
two capacitors and an ideal dissipator. How should they be connected?  Any current that leaves 
one capacitor flows through the dissipator and enters the other capacitor; this indicates a one-
junction and suggests the bond graph shown in figure 4.33. Assigning causality we see that both 

1 In practice, the dissipative phenomenon encountered on switch closure is dominated by an arc 
which "jumps the gap" before metal-to-metal contact is made rather than by the resistance of the 
metallic components. 



Integrated Modeling of Physical System Dynamics 
© Neville Hogan 1994 page 4 

capacitors may be given integral causality and the dissipator has conductance causality; it 
determines the current as a function of the voltages on the two capacitors. 

C 1 C 

R 

Figure 4.33: Model of the two capacitors including dissipation. 

But this graph has a serious flaw. We expect the dissipator to determine current as a function of 
the potential difference across its terminals.  Yet the compatibility equation (Kirchhoff's voltage 
law) associated with the junction in figure 4.33 would be written as follows (using obvious 
subscripts and reading the signs and the required causal form from the graph): 

eR = -(e1 + e2) (4.123) 

Thus the equation for the common current would depend on the negative sum of the capacitor 
voltages. 

e1 + e2iR = - R (4.124) 

This is the same problem we encountered previously.  In fact, it is possible to define a sign 
convention for the capacitor and dissipator voltages so that equation 4.124 is correct, but it is 
quite counter-intuitive. A better course of action is to revise the junction structure so that the 
expected potential difference is identified as shown in figure 4.34. 

1 0 C0C 
e1 e2 

0 : e1- e2 

R 

Figure 4.34: Revised junction structure which identifies the potential difference across the 
dissipator. 

The zero junction in the center may be eliminated, because, reading the half-arrows, its equations 
merely state that the efforts and flows on the associated bonds are identical.  The same is true for 
the zero junction on the right, but not for that on the left.  The compatibility equation for this 
junction states that the flows on the two associated bonds are equal and opposite; this junction 
cannot be eliminated.  A simplified bond graph is shown in figure 4.35. 
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Figure 4.35: Simplified bond graph for the two capacitors with dissipation. 

The numbers written beside the bonds in figure 4.35 are not strictly necessary.  They are 
included solely to facilitate the following derivation. 

State Equations 

At this point, deriving state equations is straightforward.  As all elements in this system are 
linear we might use circuit variables (capacitor voltages in this case) for state variables.  But we 
may equally well use energy variables (capacitor charges in this case) and, in fact, will do so.  
The definition of generalized displacement yields: 

dq1/dt = i1 (4.125) 

dq2/dt = i2 (4.126) 

Reading the causal strokes on the graph, i1 is determined by i4 which is in turn determined 
by i3; i2 is identical to i3. Reading the signs from the half arrows: 

i1 = -i4 = -i3 (4.127) 

The dissipator determines i3. 

1
i3 = R  e3 (4.128) 

e3 is determined by e2 and e4; e4 is identical to e1. Reading the signs from the half arrows: 

e3 = e4 - e2 (4.129) 

e4 = e1 (4.130) 

The capacitors determine e1 and e2. 

q1 e1 = C (4.131) 

q2 e2 = C (4.132) 

State equations are now obtained by substitution. 
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dq1/dt = -
1

R

⎛⎜⎝


⎞⎟⎠
 (4.133)

q1 q2 -C C 

dq2/dt = 
1

R

⎛⎜⎝


⎞⎟⎠

q1 q2 (4.134)-C C 

These equations may be written in standard integrable matrix form x' = Ax. 

-1/RC  1/RC⎡
⎢


⎤
⎥


⎡
⎢


⎤
⎥


q1 q1⎡⎢
 ⎤⎥
d 
(4.135)= 
⎢

⎣

⎢⎣
⎥

⎦

⎢
⎣
⎥⎦ ⎥

⎦

dt 1/RC -1/RCq2 q2 

Notice that the off-diagonal terms in the system matrix lack the sign asymmetry required in an 
oscillator. In fact, all elements in the system matrix have the same magnitude and the pattern of 
signs comes from the fact that i1 = -i2. It is instructive to change coordinates and use the sum 
and difference of the two charges as state variables. The transformation equation is as follows. 

1 -1 
⎡
⎢


⎤
⎥


⎡
⎢


⎤
⎥


qd q1⎡⎢
 ⎤⎥
 (4.136)
= 
⎢
⎣


⎢⎣
⎥
⎦


⎢
⎣
⎥⎦ ⎥

⎦
1  1 
qs q2 

The inverse transformation also exists. 

1/2 1/2 ⎡
⎢


⎤
⎥


⎡
⎢


⎤
⎥


q1 qd⎡⎢
 ⎤⎥
 (4.137)
= 
⎢
⎣


⎢⎣
⎥
⎦


⎢
⎣
⎥⎦ ⎥

⎦
-1/2 1/2q2 qs 

From equation 4.94, the transformed state equations are: 

1 -1  -1/RC  1/RC 1/2 1/2 ⎡
⎢


⎤
⎥


⎡
⎢


⎤
⎥


qd qd⎡⎢
 ⎡⎢⎤⎥ ⎡⎢⎤⎥ ⎤⎥
d 
(4.138)= 
⎢

⎣

⎢⎣
⎥

⎦

⎢⎣⎥⎦ ⎢⎣⎥⎦ ⎢

⎣
⎥⎦ ⎥

⎦

dt 1  1  1/RC -1/RC
 -1/2 1/2qs qs 

-2/RC 0⎡
⎢


⎤
⎥


⎡
⎢


⎤
⎥


qd qd⎡⎢
 ⎤⎥
d 
(4.139)= 
⎢

⎣

⎢⎣
⎥

⎦

⎢
⎣
⎥⎦ ⎥

⎦

dt 0 0qs qs 

With this change of coordinates the state equations are trivial to integrate.  The solutions are: 

qd(t) = qd(to)e(to - t)2/RC (4.140) 

qs(t) = qs(to) (4.141) 

Hence the second state equation merely reiterates the fact that charge is conserved in this system.  
As we expect from the pattern of signs in the system matrix, this system cannot exhibit 
oscillatory behavior. 
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A Switch Behaves as a Modulated Dissipator 

As a final remark on this simple example, if we compare figures 4.32 and 4.35 we may note that 
the causality on capacitors is same in both cases, before and after connection.  This indicates that 
it is possible to represent the models for both regimes as a single bond graph, shown in figure 
4.36. The important addition is that the switch has been represented as a modulated dissipator. 
A suitable constitutive equation would be: 

u
iR = R  eR (4.142) 

where u is a modulating or control input which can assume only two real values, 1 or 0, 
corresponding to connected and disconnected, respectively. 

iR = 
⎧⎪
⎨
⎪⎩


0 if u = 0 
eR 
R  if u = 1  (4.143) 

C 0 1 C 

modulating or 
control input, u 

R 

Figure 4.36: Model with modulated dissipator representing connected and unconnected 
behavior. 

Note that this modulated dissipator is subject to a strict causal constraint: it must have 
conductance causality, determining an output flow (current) as a function of an input effort 
(voltage). The inverse of equation 4.142 is not defined for u = 0. 

Modulated dissipators will be encountered frequently in describing control systems where 
signal-level events influence power-level behavior. 


