
Magnetic electro-mechanical machines 
Lorentz Force 
A magnetic field exerts force on a moving charge. The Lorentz equation: 

f = q(E + v × B) 

where 
f: force exerted on charge q 

E: electric field strength 

v: velocity of the moving charge 

B: magnetic flux density 

Consider a stationary straight conductor perpendicular to a vertically-oriented magnetic field. 
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An electric field is oriented parallel to the wire. As charges move along the wire, the magnetic 
field makes them try to move sideways, exerting a force on the wire. The lateral force due to all 
the charge in the wire is: 

f = ρAl (v × B) 

where 


ρ: density of charge in the wire (charge per unit volume) 

l: length of the wire in the magnetic field 
A: its cross-sectional area 
The moving charges constitute a current, i 

i = ρAv 

The lateral force on the wire is proportional to the current flowing in it. 

f = l (i × B) 

For the orthogonal orientations shown in the figure, the vectors may be represented by their 
magnitudes. 

f = l B i 
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This is one of a pair of equations that describe how electromagnetic phenomena can transfer 
power between mechanical and electrical systems. The same physical phenomenon also relates 
velocity and voltage. Consider the same wire perpendicular to the same magnetic field, but 
moving as shown 
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A component of charge motion is the same as the wire motion. The magnetic field makes 
charges try to move along the length of the wire from left to right. The resulting electromotive 
force (emf) opposes the current and is known as back-emf.  
The size of the back-emf may be deduced as follows. Voltage between two points is the work 
required to move a unit charge from one to the other. If a unit charge moves along the wire from 
right to left the work done against the electromagnetic force is 

e = v B l 

This is the other of the pair of equations that describe how electromagnetic phenomena can 
transfer power between mechanical and electrical systems.  
Two important points: 

1.	 The interaction is bi-lateral (i.e., two-way). If an electrical current generates a 

mechanical force mechanical velocity generates a back-emf. 


2.	 The interaction is power-continuous. Power is transferred from one domain to the other; 
no power is dissipated; no energy is stored; electrical power in equals mechanical power 
out (and v.v.). 
Pelectrical = e i = (v B l) i = v (B l i) = v f = Pmechanical 

Power continuity is not a modeling approximation. It arises from the underlying physics. The 
same physical quantity (magnetic flux density times wire length) is the parameter of the force-
current relation and the voltage-velocity relation 
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D'Arsonval Galvanometer 
Many electrical instruments (ammeters, voltmeters, etc.) are variants of the D'Arsonval 
galvanometer. A rectangular coil of wire pivots in a magnetic field as shown in figure 2.  
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Figure 2: Sketch of a D'Arsonval galvanometer. 
Current flowing parallel to the axis of rotation generates a torque to rotate the coil. Current 
flowing in the ends of the coil generates a force along the axis. Assuming the magnetic flux is 
vertical across the length and width of the coil, the total torque about the axis is: 

τ = 2NBlh cos(θ) i 

where 

τ: clockwise torque about the axis 
N: number of turns of wire 
B: magnetic flux density 
l: length of the coil 
h: half its height. 
This torque is counteracted by a rotational spring 
As the coils rotate, a back-emf is generated. 

e = 2NBlh cos(θ) ω 

where 

ω: angular speed of the coil. 

Note that the same parameter, 2NBlh cos(θ), shows up in both equations. 
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Direct Current Permanent Magnet Electric Motor 
With a different geometry the dependence on angle can be substantially reduced or eliminated 
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Figure 3: Schematic end-view of a D'Arsonval galvanometer modified to reduce the angle-
dependence of the transduction equations. 
Features: 

• rotating cylindrical coil 

• stationary permeable core 

• shaped permanent magnets 

• constant radial gap between magnets and core 

• the magnetic field in the gap is oriented radially 
If all turns of the coil are in the radial field the torque due to a current in the coil is independent 
of angle. 
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Figure 4: Sketch of half of the constant-current torque/angle relation resulting from the design of 
figure 3. 
From symmetry the torque/angle relation for the other half of the circle is the negative of that 
shown above. 
The reversal of torque can be eliminated by reversing the current when the angle passes through 
±90°. A mechanical commutator is sketched in figure 5. 
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Figure 5: Schematic of the mechanical commutation system used in a direct-current permanent 
magnet motor. 

Electrical connection is through a set of stationary conductors called brushes1. They contact a 
split ring called a commutator that rotates with the coil. This commutator design is used in a 
direct-current permanent-magnet motor (DCPMM). The same effect may be achieved 
electronically. That approach is used in a brushless DCPMM. 
Assuming perfect commutation the relation between torque and current for a DCPMM is 

τ = Kt i 

Kt: torque constant, a parameter determined by the mechanical, magnetic and electrical 
configuration of the device. 

There is also a corresponding relation between voltage and rotational speed. 

e = Ke ω 

Ke: back-emf or voltage constant.  


Excerpt from a manufacturer's specification sheet for a direct-current permanent-magnet motor. 


MOTOR CONSTANTS: 
(at 25 deg C) 

SYMBOL UNITS 

torque constant KT oz in/amp 5.03 

back emf constant KE volts/krpm 3.72 

terminal resistance RT ohms 1.400 

armature resistance RA ohms 1.120 

average friction torque TF oz in 3.0 

1 The reason for this terminology is historical — the earliest successful designs used wire 
brushes for this purpose. 
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viscous damping constant KD oz in/krpm 0.59 

moment of inertia JM oz in sec-sec 0.0028 

armature inductance L micro henry <100.0 

temperature coefficient of KE C %/deg c rise -0.02 

These specifications imply that the torque and back-emf constants are distinct parameters. 
different symbols: KT, KE 
different units: oz-in/amp, volts/krpm 

But if we express both constants in mks units 
Kt = 0.0355 N-m/amp 

Ke = 0.0355 volt-sec/rad 

As required by the physics of electromagnetic power transduction, the constants are in fact 
identical. 

“Parasitic” Dynamics 
The Lorentz force yields two equations describing power-continuous electro-mechanical 
transduction. A practical electric motor also includes energy storage and/or power dissipation in 
the electrical and mechanical domains. A competent model may include these effects. 

Electrical side 

•	 inductance of the coil 

•	 resistance of the coil 

•	 resistance of electrical connectors ("terminal resistance") 

Mechanical side 

•	 inertia of the rotating components (coil, shaft, etc.) 

•	 friction of brushes sliding on the commutator 

•	 viscous drag due to entrained air 

Connections: 

Electrical side: 

•	 only one distinct current—series connection of inductor, resistor & model element for 
back-emf due to velocity 

Mechanical side: 

•	 only one distinct speed—common-velocity connection of inertia, friction & model 
element for torque due to motor current 
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Schematic diagram of DCPMM model with “parasitic” dynamics 

Motor vs. Generator 
Lorentz-force electro-mechanical transduction is bi-lateral. An electric motor uses it to convert 
electrical power into rotational power. An electrical generator uses it to convert rotational power 
into electrical power. 

Tachometer 
Lorentz-force electro-mechanical transduction is also used for sensing. A DC permanent magnet 
tachometer generates voltage proportional to angular velocity as described by the velocity-
voltage equation above. 
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