
 

WORK-TO-HEAT TRANSDUCTION IN THERMO-FLUID SYSTEMS 

ENERGY-BASED MODELING IS BUILT ON THERMODYNAMICS 

— the fundamental science of physical processes. 

THERMODYNAMICS IS TO PHYSICAL SYSTEM DYNAMICS WHAT GEOMETRY IS TO 
MECHANICS. 

WHY SHOULD WE CARE ABOUT THERMAL PHENOMENA? 

— they can profoundly influence dynamic behavior. 
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EXAMPLE: A CLOSED BICYCLE PUMP  

air sealed outletwork in
 

COMPRESSIBLE GAS (AIR) IN A CLOSED CONTAINER WITH VARIABLE VOLUME 

Compress the gas and it gets hot. 

When the gas is hotter than its surroundings the temperature gradient induces 
heat flow.   
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THIS IS ANOTHER FORM OF ENERGY TRANSDUCTION 

— mechanical work to compress the gas is converted to heat.   

— governed by the first law. 

ENERGY TRANSDUCTION IS BILATERAL (IT WORKS BOTH WAYS) 

Heat the gas and its pressure increases. 

If the pressure moves the piston (to increase gas volume) mechanical work is 
done. 
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QUESTION: 

If you do work on the gas, can you get all of it back? 

(Answer: No — due to the second law.) 

Under what conditions is this energy “loss” significant? 

How do we integrate this behavior with our previous models? 

AT LEAST TWO DIFFERENT PHENOMENA ARE INVOLVED: 

energy storage 

power dissipation 
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ENERGY STORAGE IN A COMPRESSIBLE GAS 

ENERGY IS ADDED TO (OR TAKEN FROM) THE GAS IN TWO FORMS 

— mechanical work or heat 

MODEL THIS AS A MULTIPORT ENERGY STORAGE ELEMENT 

— but of what kind? 

Mod. Sim. Dyn. Syst. Work-to-heat transduction page 5 



 

A RELEVANT STATEMENT OF THE FIRST LAW: 

U = Q – W 

U: internal energy of the gas 

Q: heat added to the gas 

W: work done by expansion of the gas 

(Notation and sign convention are standard for engineering thermodynamics.) 

APPLY THIS ON AN INSTANT-BY-INSTANT BASIS USING ITS DIFFERENTIAL FORM. 

dU = dQ – dW 
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ON THE MECHANICAL SIDE: 

dW = PdV 

P: pressure 

V: volume 

THE GAS BEHAVES AS A CAPACITOR ON THE MECHANICAL SIDE  

work is a form of energy 

pressure is an effort 

volume is a displacement 
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A COMMENT ON SIGN CONVENTION 

POSITIVE WORK COMPRESSES THE GAS 

— a negative volume change, –dV. 

dW = P(–dV) 

POSITIVE WORK INCREASES GAS INTERNAL ENERGY 

dUdQ = 0 = dW = –PdV 

consistent with the usual convention. 
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ON THE THERMAL SIDE: 

GIBBS’ RELATION 
(i.e., the relevant part of it) 

dU = TdS – PdV 

T: absolute temperature 

S: entropy 

THE GAS BEHAVES AS A CAPACITOR ON THE THERMAL SIDE ALSO.   

heat is a form of energy 

temperature behaves as an effort variable 
e.g., temperature gradient induces heat flow 
electric potential gradient induces charge motion 
force induces mechanical motion 

entropy behaves as a displacement variable 
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A COMMENT ON ENTROPY 

A CLASSICAL DEFINITION OF ENTROPY IS 

dS = dQ/T 

REARRANGING YIELDS 

dQ = TdS 

ON THE THERMAL SIDE, HEAT ADDED IS 

Q1 = ⌡⌠

S0

S1
 TdS  + Q0 

Thus 

dUdW = 0 = TdS 

consistent with Gibbs’ relation. 
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DRAWBACK 

This suggests that entropy production requires heat transfer. 

NOT SO 

— adiabatic processes may generate entropy. 
(adiabatic: no heat transfer) 

THIS CLASSICAL DEFINITION IS NOT ESSENTIAL FOR OUR TREATMENT. 
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MULTIPORT CAPACITOR MODEL 

C
P

- dV/dt

T

dS/dt
U(S,V)

::
 

ENERGY STORED IN A VARIABLE VOLUME OF COMPRESSIBLE GAS 

IS A FUNCTION OF VOLUME AND ENTROPY. 

U = U(S,V) 

INTERNAL ENERGY ALSO DEPENDS ON THE MASS OF GAS.  

U = U(S,V,m) 

AS WE ASSUME A CLOSED CONTAINER, THE MASS IS CONSTANT.  

— for now, mass, m, is a parameter.  
(Later we will allow mass to vary, thereby adding a third port to the 
capacitor.) 
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MATHEMATICAL PROPERTIES: 

Internal energy is a scalar. 

U(S,V) is a scalar potential function (or field) defined on the space of 
displacements spanned by S and V. 
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Efforts in the two domains (thermal and mechanical) may be defined as the 
gradients of this potential with respect to the two displacements. 
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IN TERMS OF COMPONENTS: 

( )VS,UT S∇=  
(gradient “in the direction of” S) 

( )constant  VSUT =∂∂=  

( )VS,UP V-∇=  
(gradient “in the direction of” –V) 

( ) ( )constant  SVUVUP =∂−∂=−∂∂=  

USING THE CHAIN RULE, 

( ) ( ) ( )dVVUdSSUVS,dU ∂∂+∂∂=  

dU = TdS – PdV 
which recapitulates Gibbs’ relation. 
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NOTE: 

A TWO-PORT CAPACITOR REQUIRES TWO CONSTITUTIVE EQUATIONS, ONE FOR EACH 
PORT.  

T = T(S,V) 

P = P(S,V) 

HOWEVER, BOTH MAY BE DERIVED AS GRADIENTS OF A SINGLE ENERGY FUNCTION. 

U = U(S,V) 
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SYMMETRY: 

THE CURL OF THE GRADIENT OF A POTENTIAL FUNCTION IS ZERO. 

( ) 0VS,U =∇×∇  

IN TERMS OF COMPONENTS: 

( ) ( ) SVUVSU 22 ∂−∂∂=−∂∂∂  
(the order of differentiation doesn’t matter) 

REGROUPING 

( ) ( ) ( )( ) SVUVSU ∂−∂∂∂=−∂∂∂∂  

( ) ( )constant  Vconstant  S SPVT == ∂∂=∂∂−  
— Maxwell’s “reciprocity” condition. 
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INTRINSIC STABILITY: 

DEFINE INVERSE CAPACITANCE 
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Maxwell’s reciprocity means this is a symmetric matrix. 

STABILITY 

determinant C-1 > 0 

—a sufficient condition 
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ALTERNATIVE CAUSAL ASSIGNMENTS 

CLASSICAL THERMODYNAMICS IDENTIFIES SEVERAL DIFFERENT FUNCTIONS RELATED TO 
ENERGY: 

enthalpy 

Helmholtz free energy 

Gibbs free energy 

THESE ARE NOTHING MORE THAN THE CO-ENERGY FUNCTIONS ASSOCIATED WITH 
DIFFERENT CAUSAL ASSIGNMENTS FOR THE TWO-PORT CAPACITOR.   
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INTERNAL ENERGY CORRESPONDS TO INTEGRAL CAUSALITY ON BOTH PORTS. 

C
P

- dV/dt

T

dS/dt
U(S,V)

::
 

flow variable input on each port 

time-integrate to find displacement 

constitutive equations define output effort variables 
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ENTHALPY IS A LEGENDRE TRANSFORMATION OF ENERGY WITH RESPECT TO VOLUME. 

L⎩
⎨⎧

⎭
⎬⎫U(S,V)   = U(S,V) – ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂
V
U

V = H(S,P) 

i.e., 

H = U + PV 

ALTERNATIVELY, DIFFERENTIATE THE DEFINITION OF ENTHALPY: 

dH = dU + PdV + VdP 

SUBSTITUTING FOR THE DIFFERENTIAL OF INTERNAL ENERGY: 

dH  = TdS –PdV + P dV + VdP = TdS + VdP 

INTEGRATING YIELDS 

H = H(S,P) 

as before. 
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ENTHALPY IS A CO-ENERGY FUNCTION CORRESPONDING TO DIFFERENTIAL CAUSALITY ON 
THE MECHANICAL PORT. 

C
P

- dV/dt

T

dS/dt
H(S,P)

::
 

NOTE THAT 

( ) TSH constant  P =∂∂ =  
and 

( ) V PH constant  S =∂∂ =  

BECAUSE ENTHALPY IS A SCALAR FUNCTION OF S AND P, WE OBTAIN THE SYMMETRY 
RELATION 

SVPT ∂∂=∂∂  
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HELMHOLTZ FREE ENERGY IS A LEGENDRE TRANSFORMATION OF INTERNAL ENERGY 
WITH RESPECT TO ENTROPY. 

L⎩
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⎭
⎬⎫U(S,V)   = U(S,V) – ⎟

⎠
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⎜
⎝
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∂
∂

S
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S = F(T,V) 

i.e., 

F = U – TS 

AGAIN, AN ALTERNATIVE IS TO DIFFERENTIATE THE DEFINITION OF HELMHOLTZ FREE 
ENERGY: 

dF = dU – TdS – SdT 

SUBSTITUTING FOR INTERNAL ENERGY: 

dF = TdS –PdV – TdS – SdT = –SdT – PdV 

INTEGRATING YIELDS 

F = F(T,V) 
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HELMHOLTZ FREE ENERGY IS A CO-ENERGY FUNCTION CORRESPONDING TO DIFFERENTIAL 
CAUSALITY ON THE THERMAL PORT.   

C
P

- dV/dt

T

dS/dt
F(T,V)

::
 

NOTE THAT 

( ) -STF constant  V =∂∂ =  
and 

( ) -PVF constant  T =∂∂ =  

BECAUSE HELMHOLTZ FREE ENERGY IS A SCALAR FUNCTION OF T AND V, WE OBTAIN THE 
SYMMETRY RELATION 

∂S/∂V = ∂P/∂T 
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GIBBS FREE ENERGY IS A LEGENDRE TRANSFORMATION OF INTERNAL ENERGY WITH 
RESPECT TO BOTH ENTROPY AND VOLUME. 
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V = G(T,P) 

i.e., 

GIBBS FREE ENERGY 

G = U – TS + PV 

AGAIN, AN ALTERNATIVE IS TO DIFFERENTIATE THE DEFINITION OF GIBBS FREE ENERGY: 

dG = dU – TdS – SdT + PdV + VdP 

SUBSTITUTING FOR THE INTERNAL ENERGY: 

dG = VdP – SdT 

INTEGRATING YIELDS 

G = G(T,P) 
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GIBBS FREE ENERGY CORRESPONDS TO DIFFERENTIAL CAUSALITY ON BOTH PORTS.   

C
P

- dV/dt

T

dS/dt
G(T,P)

::
 

NOTE THAT 

∂G/∂T = –S 
and 

∂G/∂P = V 

BECAUSE GIBBS FREE ENERGY IS A SCALAR FUNCTION OF T AND P, WE OBTAIN THE 
SYMMETRY RELATION 

∂S/∂P = –∂V/∂T 
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REMARKS 

ONLY INTERNAL ENERGY IS A TRUE ENERGY 

—it's the only one that's guaranteed conserved.  

—the others are co-energies. 

CO-ENERGY FUNCTIONS CAN SIMPLIFY PRACTICAL PROBLEMS 

—they are widely used in classical thermodynamics. 
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(MORE) REMARKS  

WE IMPLICITLY ASSUMED A SIMPLE THERMODYNAMIC SUBSTANCE CONTAINING ONLY 
ONE CHEMICAL SPECIES.   

GENERALIZING TO SYSTEMS CONTAINING MULTIPLE CHEMICAL SPECIES IS 
STRAIGHTFORWARD.   

Internal energy becomes a function of the molar quantities, ηi, of the various 
species. 

U = U(S,V,η1,η2, ...).   

Treating ηi as displacements, the corresponding gradients of internal energy 
define chemical potentials, µi.  

AN EXTENSION OF MAXWELL’S RECIPROCITY CONDITIONS MUST BE TRUE:   

The vector field relating efforts (temperature, pressure, chemical potentials) to 
displacements (entropy, volume, molar quantities) must have zero curl.   

FROM THIS VIEWPOINT, MUCH OF CLASSICAL THERMODYNAMICS IS THE STUDY OF 
PARTICULAR MULTIPORT CAPACITORS. 
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	WORK-TO-HEAT TRANSDUCTION IN THERMO-FLUID SYSTEMS
	Energy-based modeling is built on thermodynamics
	— the fundamental science of physical processes.

	Thermodynamics is to physical system dynamics what geometry is to mechanics.
	Why should we care about thermal phenomena?
	— they can profoundly influence dynamic behavior.


	EXAMPLE: A CLOSED BICYCLE PUMP 
	 
	compressible gas (air) in a closed container with variable volume
	Compress the gas and it gets hot.
	When the gas is hotter than its surroundings the temperature gradient induces heat flow.  

	This is another form of energy transduction
	— mechanical work to compress the gas is converted to heat.  
	— governed by the first law.

	Energy transduction is bilateral (it works both ways)
	Heat the gas and its pressure increases.
	If the pressure moves the piston (to increase gas volume) mechanical work is done.

	Question:
	If you do work on the gas, can you get all of it back?
	(Answer: No — due to the second law.)
	Under what conditions is this energy “loss” significant?
	How do we integrate this behavior with our previous models?

	At least two different phenomena are involved:
	energy storage
	power dissipation


	ENERGY STORAGE IN A COMPRESSIBLE GAS
	Energy is added to (or taken from) the gas in two forms
	— mechanical work or heat

	Model this as a multiport energy storage element
	— but of what kind?


	A RELEVANT STATEMENT OF THE FIRST LAW:
	U = Q – W
	U: internal energy of the gas
	Q: heat added to the gas
	W: work done by expansion of the gas
	(Notation and sign convention are standard for engineering thermodynamics.)

	Apply this on an instant-by-instant basis using its differential form.
	dU = dQ – dW


	ON THE MECHANICAL SIDE:
	dW = PdV
	P: pressure
	V: volume

	The gas behaves as a capacitor on the mechanical side 
	work is a form of energy
	pressure is an effort
	volume is a displacement


	A COMMENT ON SIGN CONVENTION
	Positive work compresses the gas
	— a negative volume change, –dV.
	dW = P(–dV)

	Positive work increases gas internal energy
	dUdQ = 0 = dW = –PdV
	consistent with the usual convention.


	ON THE THERMAL SIDE:
	Gibbs’ relation
	(i.e., the relevant part of it)
	dU = TdS – PdV
	T: absolute temperature
	S: entropy

	The gas behaves as a capacitor on the thermal side also.  
	heat is a form of energy
	temperature behaves as an effort variable
	e.g., temperature gradient induces heat flow
	electric potential gradient induces charge motion
	force induces mechanical motion

	entropy behaves as a displacement variable


	A COMMENT ON ENTROPY
	A classical definition of entropy is
	dS = dQ/T

	Rearranging yields
	dQ = TdS

	On the thermal side, heat added is
	Q1 =  + Q0
	Thus
	dUdW = 0 = TdS
	consistent with Gibbs’ relation.

	Drawback
	This suggests that entropy production requires heat transfer.

	Not so
	— adiabatic processes may generate entropy.
	(adiabatic: no heat transfer)


	This classical definition is not essential for our treatment.

	MULTIPORT CAPACITOR MODEL
	 
	Energy stored in a variable volume of compressible gas
	is a function of volume and entropy.
	U = U(S,V)

	Internal energy also depends on the mass of gas. 
	U = U(S,V,m)

	As we assume a closed container, the mass is constant. 
	— for now, mass, m, is a parameter. 
	(Later we will allow mass to vary, thereby adding a third port to the capacitor.)


	Mathematical properties:
	Internal energy is a scalar.
	U(S,V) is a scalar potential function (or field) defined on the space of displacements spanned by S and V.
	q =  
	U = U(q)
	Efforts in the two domains (thermal and mechanical) may be defined as the gradients of this potential with respect to the two displacements.
	e =  
	 


	IN TERMS OF COMPONENTS:
	 
	(gradient “in the direction of” S)
	 
	 
	(gradient “in the direction of” –V)

	 

	Using the chain rule,
	 
	dU = TdS – PdV
	which recapitulates Gibbs’ relation.



	NOTE:
	A two-port capacitor requires two constitutive equations, one for each port. 
	T = T(S,V)
	P = P(S,V)

	However, both may be derived as gradients of a single energy function.
	U = U(S,V)


	SYMMETRY:
	The curl of the gradient of a potential function is zero.
	 

	In terms of components:
	 
	(the order of differentiation doesn’t matter)


	Regrouping
	 
	 
	— Maxwell’s “reciprocity” condition.



	INTRINSIC STABILITY:
	Define inverse capacitance
	 
	Maxwell’s reciprocity means this is a symmetric matrix.

	Stability
	determinant C-1 > 0
	—a sufficient condition


	ALTERNATIVE CAUSAL ASSIGNMENTS
	Classical thermodynamics identifies several different functions related to energy:
	enthalpy
	Helmholtz free energy
	Gibbs free energy

	These are nothing more than the co-energy functions associated with different causal assignments for the two-port capacitor.  
	Internal energy corresponds to integral causality on both ports.
	 
	flow variable input on each port
	time-integrate to find displacement
	constitutive equations define output effort variables

	Enthalpy is a Legendre transformation of energy with respect to volume.
	L = U(S,V) –  V = H(S,P)
	i.e.,

	H = U + PV

	Alternatively, differentiate the definition of enthalpy:
	dH = dU + PdV + VdP

	Substituting for the differential of internal energy:
	dH  = TdS –PdV + P dV + VdP = TdS + VdP

	Integrating yields
	H = H(S,P)
	as before.

	Enthalpy is a co-energy function corresponding to differential causality on the mechanical port.
	 

	Note that
	 
	and

	 

	Because enthalpy is a scalar function of S and P, we obtain the symmetry relation
	 

	Helmholtz free energy is a Legendre transformation of internal energy with respect to entropy.
	L = U(S,V) –  S = F(T,V)
	i.e.,

	F = U – TS

	Again, an alternative is to differentiate the definition of Helmholtz free energy:
	dF = dU – TdS – SdT

	Substituting for internal energy:
	dF = TdS –PdV – TdS – SdT = –SdT – PdV

	Integrating yields
	F = F(T,V)

	Helmholtz free energy is a co-energy function corresponding to differential causality on the thermal port.  
	 

	Note that
	 
	and

	 

	Because Helmholtz free energy is a scalar function of T and V, we obtain the symmetry relation
	(S/∂V = ∂P/∂T

	Gibbs free energy is a Legendre transformation of internal energy with respect to both entropy and volume.
	L = U(S,V) – S – V = G(T,P)
	i.e.,


	Gibbs free energy
	G = U – TS + PV

	Again, an alternative is to differentiate the definition of Gibbs free energy:
	dG = dU – TdS – SdT + PdV + VdP

	Substituting for the internal energy:
	dG = VdP – SdT

	Integrating yields
	G = G(T,P)

	Gibbs free energy corresponds to differential causality on both ports.  
	 

	Note that
	∂G/∂T = –S
	and

	∂G/∂P = V

	Because Gibbs free energy is a scalar function of T and P, we obtain the symmetry relation
	∂S/∂P = –∂V/∂T


	REMARKS
	Only internal energy is a true energy
	—it's the only one that's guaranteed conserved. 
	—the others are co-energies.

	Co-energy functions can simplify practical problems
	—they are widely used in classical thermodynamics.


	(MORE) REMARKS 
	We implicitly assumed a simple thermodynamic substance containing only one chemical species.  
	Generalizing to systems containing multiple chemical species is straightforward.  
	Internal energy becomes a function of the molar quantities, i, of the various species.
	U = U(S,V,1,2, ...).  
	Treating i as displacements, the corresponding gradients of internal energy define chemical potentials, µi. 

	An extension of Maxwell’s reciprocity conditions must be true:  
	The vector field relating efforts (temperature, pressure, chemical potentials) to displacements (entropy, volume, molar quantities) must have zero curl.  

	From this viewpoint, much of classical thermodynamics is the study of particular multiport capacitors.


