
NETWORK MODELS OF TRANSMISSION LINES AND WAVE BEHAVIOR 

MOTIVATION: 

Ideal junction elements are power-continuous.   
Power out = power out instantaneously 

In reality, power transmission takes finite time.   
Power out ≠ power in 

Consider a lossless, continuous uniform beam.   
Model it as a number of segments.   

In the limit as the number of segments approaches infinity, the model 
competently describes wave behavior  

(e.g. wave speed, characteristic impedance). 

What if number of segments is finite?   
• How do you choose the parameters of each segment?   
• What wave speed and characteristic impedance are predicted by this 
finite-segment model? 
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APPROACH: 

Consider the transmission line and each of its segments as 2-port elements 
relating 2 pairs of 2 variables.   

There are 4 possible forms (choices of input and output).   

Two of them are causal, the impedance form: 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

eb
  = 

⎣
⎢
⎡

⎦
⎥
⎤ Z  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤fa

fb
  

Z  
and the admittance form: 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤fa

fb
  = 

⎣
⎢
⎡

⎦
⎥
⎤ Y  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

eb
  

Y  
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The remaining two forms are a-causal: 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

fa
  = 

⎣
⎢
⎡

⎦
⎥
⎤ M  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
  = 

⎣
⎢
⎡

⎦
⎥
⎤ M  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

fa
  

M is called a transmission matrix. 

M  
The benefit of the a-causal forms is that segments may be concatenated by 
matrix multiplication. 
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HOW IS M STRUCTURED?   

Consider the elements of a linear, lossless transmission line.   

Using the Laplace variable, s, we may describe the capacitor as an 
impedance: 

0

C

a b

 

ea = 
1

Cs (fb – fa)  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

eb
  = 

⎣
⎢
⎡

⎦
⎥
⎤-1/Cs 1/Cs

-1/Cs 1/Cs  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤fa

fb
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We may describe the inertia as an admittance: 

1
c d

I  

fc = 
1
Is (ed – ec)  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤fc

fd
  = 

⎣
⎢
⎡

⎦
⎥
⎤-1/Is 1/Is

-1/Is 1/Is  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ec

ed
  

Note that there is no simple way to concatenate these.  
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Instead, describe them as transmission matrices.   

The capacitor: 

ea = eb 

fa = fb - Cs ea 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

fa
  = 

⎣
⎢
⎡

⎦
⎥
⎤1 0

-Cs 1  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
  

The inertia: 

fc = fd 

ec = ed - Is fd 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ec

fc
  = 

⎣
⎢
⎡

⎦
⎥
⎤1 -Is

0 1  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ed

fd
  

These may be concatenated easily by multiplication. 
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NOTE: 

• The determinant of the transmission matrix, M, is unity. 

• C (or I) can be replaced by any 1-port system. 
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GENERAL FORM 

To find the general form of the transmission matrix, consider the properties 
of an idealized lossless transmission line. 

1. uniformly and infinitely decomposable.   
(The line can be divided into any number of identical pieces) 

Denote the transmission matrix for one-nth of the line as M1/n. 

— M — = — M1/2 — M1/2 — = — M1/3 — M1/3 — M1/3 — 

i.e. M = (M1/2)2 = (M1/3)3 = (M1/n)n 
Thus M is "self-replicating". 
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2. transposable.   
(The line should look the same from both sides) 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

fa
  = 

⎣
⎢
⎡

⎦
⎥
⎤A B

C D  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
  

Determinant = 1 so the inverse is 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
  = 

⎣
⎢
⎡

⎦
⎥
⎤D -B

-C A  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

fa
  

Now change the sign so that, as before, power is positive in the direction of 
input to output. 

fa = fd; ea = -ed; fc = fb; ec = -eb 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ec

fc
  = 

⎣
⎢
⎡

⎦
⎥
⎤D B

C A  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ed

fd
  

Comparing: 

A = D and A2 - 1 = BC 
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(determinant = 1) 
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Next concatenate two one-nth segments of the line. 

(M1/n)(M1/n) = (M2/n) 

⎣
⎢
⎡

⎦
⎥
⎤A1/n B1/n

C1/n A1/n
 
⎣
⎢
⎡

⎦
⎥
⎤A1/n B1/n

C1/n A1/n
  = 

⎣
⎢
⎡

⎦
⎥
⎤2A1/n2 - 1 2A1/nB1/n

2A1/nC1/n 2A1/n2 - 1   = 
⎣
⎢
⎡

⎦
⎥
⎤A2/n B2/n

C2/n A2/n
  

write 

A1/n = cosh Γ/n B1/n = Zo sinh Γ/n 

C1/n = 
A1/n2 - 1

B1/n
  = 

1
Zo

  sinh Γ/n = Yo sinh Γ/n 

cosh Γ = 12 (eΓ + e-Γ)  cosh2 Γ  = 12 (cosh 2Γ + 1)  

sinh Γ = 12 (eΓ – e-Γ)  sinh Γ cosh Γ  = 12 (sinh 2Γ)  

Thus 

M1/n = 
⎣
⎢
⎡

⎦
⎥
⎤cosh Γ/n Zo sinh Γ/n

Yo sinh Γ/n cosh Γ/n
   

Note that cosh2 Γ – sinh2 Γ = 1 and ZoYo = 1, so DET(M1/n) = 1 as required.   
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Check the "self-replicating" property: 

2A1/n2 - 1 = cosh 2Γ/n 

2A1/nB1/n = Zo sinh 2Γ/n 

2A1/nC1/n = Yo sinh 2Γ/n 

Therefore 

M = 
⎣
⎢
⎡

⎦
⎥
⎤cosh Γ Zo sinh Γ

Yo sinh Γ cosh Γ
   

Γ is a delay parameter inversely proportional to wave speed (see below).   

Zo is a characteristic impedance 
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NEXT CONSIDER A LINE COMPOSED OF REPEATED SEGMENTS.   

For convenience we will use the following notation: 
0

Y

0

C

e.g.Y

 
This is a "shunt admittance".   

M = 
⎣
⎢
⎡

⎦
⎥
⎤1 0

Y 1   

1

Z

e.g.

1

I

Z

 
This is a "series impedance".   

M = 
⎣
⎢
⎡

⎦
⎥
⎤1 Z

0 1   
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In the linear case Y and Z may be any functions of the Laplace variable. 
Note (a) the unusual sign convention and (b) the derivative causality on 
the energy storage elements. 

Use a symmetric primitive segment for the transmission line, the T-net: 
 1 

Z 

0

Y

1

Z

Z/2n

Y/n

Z/2n

:Z/2n :Y/n :Z/2n  

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

fa
  = 

⎣
⎢
⎡

⎦
⎥
⎤1 Z/2n

0 1  
⎣
⎢
⎡

⎦
⎥
⎤1 0

Y/n 1  
⎣
⎢
⎡

⎦
⎥
⎤1 Z/2n

0 1  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
  = 

⎣
⎢
⎡

⎦
⎥
⎤1 + ZY/2n2 Z/n + Z2Y/4n3

Y/n 1 + ZY/2n2
 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
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Equate this to M1/n 

cosh Γ/n = 1 + ZY/2n2 

Z/n + Z2Y/4n3

Y/n   = Z/Y + Z2/4n2 = Zo2 

Γ = n cosh-1(1 + ZY/2n2) 

Zo = Z/Y + Z2/4n2  

These formulae permit a model with a finite number of segments to 
reproduce the wave speed and characteristic impedance of a continuous, 
linear lossless transmission line exactly. 

Note that (for a uniform transmission line) Zo is the same for all segments, 
independent of line length.   
The delay parameter Γ is proportional to the number of segments, i.e. 
proportional to line length. 
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Consider the limit as the number of segments approaches infinity.   

From the series expansion of cosh Γ/n = 1 + 12 (Γ/n) 2 + ... 

∞→n
lim Γ = ZY  

and 

∞→n
lim Zo = Z/Y  

Note also that 

∞→n
lim M1/n = 1 

That is, as the number of segments in a approaches infinity, the 
transmission matrix for each approaches that of an power-continuous 0 or 1 
junction  

— as it should. 
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A comparable derivation may be performed for the other possible 
symmetric primitive segment, the π-net: 

0

Y

1

Z
Y/2n

Z/n

:Y/2n :Z/n

0

Y :Y/2n
Y/2n

 
The formulae are: 

Γ = n cosh-1(1 + ZY/2n2) 

Yo = Y/Z + Y2/4n2  
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Aside: Note that if the primitive segment is asymmetric, e.g. as follows 
0

Y

1

Z

Z/n

Y/n
:Y/n :Z/n  

The transmission matrix is 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤ea

fa
  = 

⎣
⎢
⎡

⎦
⎥
⎤1 Z/n

Y/n YZ/n2 + 1  
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤eb

fb
  

This can only be compared to the continuous transmission line matrix in the 
limiting case, i.e. when YZ/n2 << 1.   

Thus a finite number of these segments cannot exactly reproduce the wave 
speed and characteristic impedance of a uniform, continuous transmission 
line. 
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EXAMPLE:  

Continuous, lossless, linear beam model 

kn
m/n  

Use a T-net model for each segment: 

In the Laplace domain: 

mass element: F = msv Z = ms 

stiffness element F = kx v = Fs/k Y = s/k 
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0

C

1

I

1

I :m/2n :1/kn :m/2n
m/2n m/2n

kn

 



As the number of segments approaches infinity: 

Delay parameter 

Γ = ms s/k  = s m/k  = s/ωn 
where  
m = net beam mass, 
k = net beam stiffness  
ωn = undamped natural frequency 

Characteristic impedance 

Zo = 
ms
s/k  = mk  

Note that Zo has the units of resistance (damping) 
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EXAMPLE:  

Continuous, lossless, linear beam terminated by a lumped impedance. 
M Z :Z t  

Write out the transmission matrix equations: 

ea = cosh Γ eb + Zo sinh Γ fb 

fa = Yo sinh Γ eb + cosh Γ fb 

and the terminal impedance equation 

eb = Zt fb 
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substitute 

ea = (cosh Γ Zt + Zo sinh Γ) fb 

fa = (Yo sinh Γ Zt + cosh Γ) fb 

whence 

ea = 
(cosh Γ Zt + Zo sinh Γ)
(Yo sinh Γ Zt + cosh Γ)  fa 

Note that if Zt = Zo = Yo-1 

ea = Zo 
(cosh Γ + sinh Γ)
(sinh Γ + cosh Γ)  fa = Zo fa 
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If the terminal impedance is matched to the characteristic impedance, the 
line appears identical to a lumped impedance Zo. 

Note that this result is independent of the length of the transmission line.   

Because Zo has the units of resistance, an infinitely long transmission line 
appears identical to a resistance.   
Power may be put into the line, and though energy is conserved (the line is 
"lossless"), no power ever comes back out. 

POINT:  

The distinction between “lossless” and “dissipative” behavior may not be as 
clear as it is sometimes presented. 
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WAVE BEHAVIOR 

Consider an asymmetric model of a section of a transmission line ∆x long.   
(this is OK as we will take the limit as ∆x → 0, equivalent to n → ∞) 

z ²x

y ²x
e e
f f

²x

ii+1

i+1 i

 
ei+1 = ei - z ∆x fi 

fi+1 = fi - y ∆x ei+1 

∆e = -z ∆x fi 

∆f = -y ∆x ei+1 
where z and y are impedance and admittance per unit length.   
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For a line of length L 

z = Z/L 

y = Y/L 

Take the limit as ∆x approaches zero 

x
elim

0x ∂
∂

→Δ = - z f 

x
flim

0x ∂
∂

→Δ = - y e 

(partials as e and f are functions of s as well as x.) 

2

2

x
e

∂
∂

= zy e = γ2 e 

γ is the delay parameter per unit length. 

Γ = ZY  = zLyL  = L zy  = γL 
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Remember that the impedance per unit length is the same as the total 
impedance. 

Zo = Z/Y  = z/y  

A general solution to this partial differential equation is 

e(x) = A e–Γx + B eΓx 
where A and B are determined by the boundary conditions. 

One end free: e(0) = 0 = A + B ∴ B = –A 
Drive the other end sinusoidally: e(L) = cos ωt 
After a little algebra  

( I recommend you check) 

e(x) = 
1

2sin(ωL/c) ⎣
⎡

⎦
⎤sin(ωt + ωx/c) - sin(ωt – ωx/c)   

where c = jω/γ (j is the unit imaginary number) 
This is a sum of a left-going wave and a right-going wave.   
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Identify a point of constant phase:  

d(ωt + ωx/c) = 0 

dx/dt = ± c 
Thus c is the phase velocity 

c = fλ 
where f is frequency in cycles/second (Hertz) and λ is wavelength. 

fλ = ωλ/2π 

Mod. Sim. Dyn. Sys. Transmission Lines page 27 



EXAMPLE:  

Continuous, lossless, linear model of a uniform beam of length L, area A, 
density ρ, and Young's modulus E. 

Net mass  

m = ρAL 
Net stiffness  

k = EA/L 

Z = ms = ρALs 

Y = s/k = sL/EA 
Per unit length: 

z = ρAs 

y = s/EA 
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Characteristic impedance:  

Zo = z/y  = ρAEA  = A ρE  

Delay parameter: 

Γ = ZY  = ρALs sL/EA  = sL ρ/E  

Per unit length: 

γ = s ρ/E  

substitute s = jω and find the wave speed: 

c = 1/γ = E/ρ  
— a familiar result. 
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WAVE SCATTERING VARIABLES 

The following change of variables is extremely useful and provides 
considerable further insight.   

Define the variables u and v as follows: 

e = (u + v) 
a

2  

f = (u - v) 1

a 2
  

where a is a constant parameter to be determined. 

⎣
⎢
⎡

⎦
⎥
⎤e

f
  = 

⎣
⎢
⎡

⎦
⎥
⎤a/ 2 a/ 2

1/a 2 –1/a 2
 
⎣
⎢
⎡

⎦
⎥
⎤u

v
  

⎣
⎢
⎡

⎦
⎥
⎤u

v
  = 

⎣
⎢
⎡

⎦
⎥
⎤1/a 2 a/ 2

1/a 2 –a/ 2
 
⎣
⎢
⎡

⎦
⎥
⎤e

f
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Apply this change of variables to the transmission matrix. 

M = 
⎣
⎢
⎡

⎦
⎥
⎤cosh Γ Zo sinh Γ

Yo sinh Γ cosh Γ
   

⎣
⎢
⎡

⎦
⎥
⎤ea

fa
  = 

⎣
⎢
⎡

⎦
⎥
⎤cosh Γ Zo sinh Γ

Yo sinh Γ cosh Γ
 
⎣
⎢
⎡

⎦
⎥
⎤eb

fb
  

⎣
⎢
⎡

⎦
⎥
⎤ua

va
  = 

⎣
⎢
⎡

⎦
⎥
⎤1/a 2 a/ 2

1/a 2 –a/ 2
 
⎣
⎢
⎡

⎦
⎥
⎤cosh Γ Zo sinh Γ

Yo sinh Γ cosh Γ
 
⎣
⎢
⎡

⎦
⎥
⎤a/ 2 a/ 2

1/a 2 –1/a 2
 
⎣
⎢
⎡

⎦
⎥
⎤ub

vb
  

⎣
⎢
⎡

⎦
⎥
⎤ua

va
  = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤coshΓ + 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞a2Yo

2  + 
Zo

2a2 sinhΓ
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞a2Yo

2  – 
Zo

2a2 sinhΓ

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

–
a2Yo

2  + 
Zo

2a2 sinhΓ coshΓ – 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞a2Yo

2  + 
Zo

2a2 sinhΓ
 
⎣
⎢
⎡

⎦
⎥
⎤ub

vb
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Define 
a2Yo

2   = 
Zo

2a2  a4 = Zo2 a2 = ±Zo a = ± Zo  or a = ±j Zo  

⎣
⎢
⎡

⎦
⎥
⎤ua

va
  = 

⎣
⎢
⎡

⎦
⎥
⎤coshΓ + sinhΓ 0

0 coshΓ – sinhΓ
 
⎣
⎢
⎡

⎦
⎥
⎤ub

vb
  

⎣
⎢
⎡

⎦
⎥
⎤ua

va
  = 

⎣
⎢
⎡

⎦
⎥
⎤eΓ 0

0 e–Γ
 
⎣
⎢
⎡

⎦
⎥
⎤ub

vb
  

Inverting the second equation 

⎣
⎢
⎡

⎦
⎥
⎤ua

vb
  = 

⎣
⎢
⎡

⎦
⎥
⎤eΓ 0

0 eΓ
 
⎣
⎢
⎡

⎦
⎥
⎤ub

va
  

Now if you recall that Γ = s/ωn you can see that exp(Γ) = exp(s/ωn) is the 
Laplace transform of a delay time of 1/ωn.   

Hence the term "delay parameter" for Γ.   
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This change of variables has reduced the transmission line to a delay 
operator. 

The variable u is a characteristic of the right-going or "fore wave".   
The variable ua is a delayed version of ub.   

The variable v is a characteristic of the left-going or "back wave".   
The variable vb is a delayed version of va.   

Together, the variables u and v are known as wave scattering variables. 
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RELATION TO THE ONE-DIMENSIONAL WAVE EQUATION. 

Rewrite the equations for an asymmetric segment in the time domain, using 
z = ms/L = ρAs and y = s/kL = s/EA and substituting d/dt for s. 

ei+1(x+∆x,t) = ei(x,t) – 
m∆x

L  
d
dt  fi(x,t) 

fi+1(x+∆x,t) = fi(x,t) – 
∆x
kL 

d
dt  ei+1(x+∆x,t) 
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Take the limit as ∆x → 0 

x∂
∂

e(x,t) = – tL
m

∂
∂

f(x,t) 

x∂
∂

f(x,t) = – tkL
1

∂
∂

e(x,t)  

or 

x∂
∂

e(x,t) = – ρA t∂
∂

f(x,t) 

x∂
∂

f(x,t) = – tEA
1

∂
∂

e(x,t) 
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Differentiate again 

2

2

x∂
∂

e(x,t) = – ρA xt ∂
∂

∂
∂

f(x,t) = – ρA ( )⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂ tx,e

tEA
1

t  

2

2

x
e

∂
∂

= 2

2

t
e

E
ρ

∂
∂

 

This is the one-dimensional wave equation 

0
t
e

c
1

x
e

2

2

22

2

=
∂
∂

−
∂
∂

 

where c = E/ρ  = 1/γ is the wave speed (phase velocity) 
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Rewrite: 

0e
tc

1
xtc

1
x

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

 

Change variables: 

g = x + ct 

h = x – ct 

e(x,t) = e(g,h) 
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Solutions are of the form 

e(g,h) = u(g) + v(h) 

e(x,t) = u(x + ct) + v(x – ct) 
where u(·) and v(·) are arbitrary functions (restricted only by continuity).   

The functions u(·) and v(·) may be regarded as basis functions for the 
solution set.   

Alternatively, they may be regarded as combinations of other basis 
functions, e.g. sinusoids. 
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The function u(x + ct) is a wave of shape u(x) traveling rightward (e.g. the 
"fore wave") at speed c.   

Function v(x – ct) is a wave of shape v(x) traveling leftward (e.g. the "back 
wave") at speed c. 

Now consider only the right going or fore wave, u(x + ct).   

In general we expect power to be proportional to the square of its 
magnitude.   

(We have assumed the medium to be linear and u(g) may be described as a linear 
composition of sinusoidal functions each of which contributes to power in 
proportion to the square of its magnitude).   

Thus the power transported to the right Pu ∝ u2(g).   

By a similar argument the power transported to the left Pv ∝ v2(h).   

The net power transported to the right, P ∝ u2(g) – v2(h).   
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But we may express power transport as a product P = e(x,t)f(x,t) so  

P ∝ ⎝⎛ ⎠⎞u(g) + v(h) ⎝⎛ ⎠⎞u(g) – v(h)   

Therefore if  

e(x,t) = u(x + ct) + v(x – ct) 

then 

f(x,t) = u(x + ct) – v(x – ct) 
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It is important to recognize that, despite terminology, the change of 
variables  
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may be introduced independent of any assumptions used to define wave 
behavior (e.g., infinite continuous line, etc.) 
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	NETWORK MODELS OF TRANSMISSION LINES AND WAVE BEHAVIOR
	Motivation:
	Ideal junction elements are power-continuous.  
	Power out = power out instantaneously

	In reality, power transmission takes finite time.  
	Power out ≠ power in

	Consider a lossless, continuous uniform beam.  
	Model it as a number of segments.  

	In the limit as the number of segments approaches infinity, the model competently describes wave behavior 
	(e.g. wave speed, characteristic impedance).

	What if number of segments is finite?  
	• How do you choose the parameters of each segment?  
	• What wave speed and characteristic impedance are predicted by this finite-segment model?



	APPROACH:
	Consider the transmission line and each of its segments as 2-port elements relating 2 pairs of 2 variables.  
	There are 4 possible forms (choices of input and output).  
	Two of them are causal, the impedance form:
	and the admittance form:
	 The remaining two forms are a-causal:
	M is called a transmission matrix.

	The benefit of the a-causal forms is that segments may be concatenated by matrix multiplication.

	 How is M structured?  
	Consider the elements of a linear, lossless transmission line.  
	Using the Laplace variable, s, we may describe the capacitor as an impedance:
	 We may describe the inertia as an admittance:
	Note that there is no simple way to concatenate these. 

	 Instead, describe them as transmission matrices.  
	The capacitor:
	The inertia:
	These may be concatenated easily by multiplication.

	 Note:
	• The determinant of the transmission matrix, M, is unity.
	• C (or I) can be replaced by any 1-port system.

	 General form
	To find the general form of the transmission matrix, consider the properties of an idealized lossless transmission line.
	1. uniformly and infinitely decomposable.  
	(The line can be divided into any number of identical pieces)

	Denote the transmission matrix for one-nth of the line as M1/n.
	Thus M is "self-replicating".

	 2. transposable.  
	(The line should look the same from both sides)

	Determinant = 1 so the inverse is
	Now change the sign so that, as before, power is positive in the direction of input to output.
	Comparing:
	 Next concatenate two one-nth segments of the line.
	Thus
	Check the "self-replicating" property:
	Therefore
	 is a delay parameter inversely proportional to wave speed (see below).  
	Zo is a characteristic impedance

	 Next consider a line composed of repeated segments.  
	For convenience we will use the following notation:
	This is a "shunt admittance".  
	This is a "series impedance".  
	In the linear case Y and Z may be any functions of the Laplace variable.
	Note (a) the unusual sign convention and (b) the derivative causality on the energy storage elements.

	Use a symmetric primitive segment for the transmission line, the T-net:
	 Equate this to M1/n
	These formulae permit a model with a finite number of segments to reproduce the wave speed and characteristic impedance of a continuous, linear lossless transmission line exactly.
	Note that (for a uniform transmission line) Zo is the same for all segments, independent of line length.  
	The delay parameter  is proportional to the number of segments, i.e. proportional to line length.

	 Consider the limit as the number of segments approaches infinity.  
	That is, as the number of segments in a approaches infinity, the transmission matrix for each approaches that of an power-continuous 0 or 1 junction 
	— as it should.

	 A comparable derivation may be performed for the other possible symmetric primitive segment, the π-net:
	The formulae are:
	 Aside: Note that if the primitive segment is asymmetric, e.g. as follows
	The transmission matrix is
	This can only be compared to the continuous transmission line matrix in the limiting case, i.e. when YZ/n2 << 1.  
	Thus a finite number of these segments cannot exactly reproduce the wave speed and characteristic impedance of a uniform, continuous transmission line.


	 Example: 
	Continuous, lossless, linear beam model
	Use a T-net model for each segment:
	In the Laplace domain:
	mass element: F = msv Z = ms
	stiffness element F = kx v = Fs/k Y = s/k
	 As the number of segments approaches infinity:
	Delay parameter
	Characteristic impedance
	Note that Zo has the units of resistance (damping)

	 Example: 
	Continuous, lossless, linear beam terminated by a lumped impedance.
	Write out the transmission matrix equations:
	and the terminal impedance equation
	 substitute
	whence
	 If the terminal impedance is matched to the characteristic impedance, the line appears identical to a lumped impedance Zo.
	Note that this result is independent of the length of the transmission line.  
	Because Zo has the units of resistance, an infinitely long transmission line appears identical to a resistance.   Power may be put into the line, and though energy is conserved (the line is "lossless"), no power ever comes back out.

	Point: 
	The distinction between “lossless” and “dissipative” behavior may not be as clear as it is sometimes presented.


	WAVE BEHAVIOR
	Consider an asymmetric model of a section of a transmission line ∆x long.  
	 For a line of length L
	Take the limit as ∆x approaches zero
	 is the delay parameter per unit length.
	 Remember that the impedance per unit length is the same as the total impedance.
	A general solution to this partial differential equation is
	One end free: e(0) = 0 = A + B  B = –A
	Drive the other end sinusoidally: e(L) = cos t
	After a little algebra 
	This is a sum of a left-going wave and a right-going wave.  
	 Identify a point of constant phase: 
	Thus c is the phase velocity


	 Example: 
	Continuous, lossless, linear model of a uniform beam of length L, area A, density , and Young's modulus E.
	Net mass 
	Net stiffness 
	Per unit length:

	 Characteristic impedance: 
	Delay parameter:
	Per unit length:
	substitute s = j and find the wave speed:
	— a familiar result.



	WAVE SCATTERING VARIABLES
	The following change of variables is extremely useful and provides considerable further insight.  
	Define the variables u and v as follows:
	 Apply this change of variables to the transmission matrix.
	Inverting the second equation
	Now if you recall that  = s/n you can see that exp() = exp(s/n) is the Laplace transform of a delay time of 1/n.  
	Hence the term "delay parameter" for .  

	 This change of variables has reduced the transmission line to a delay operator.
	The variable u is a characteristic of the right-going or "fore wave".  
	The variable ua is a delayed version of ub.  

	The variable v is a characteristic of the left-going or "back wave".  
	The variable vb is a delayed version of va.  

	Together, the variables u and v are known as wave scattering variables.


	RELATION TO THE ONE-DIMENSIONAL WAVE EQUATION.
	Rewrite the equations for an asymmetric segment in the time domain, using z = ms/L = As and y = s/kL = s/EA and substituting d/dt for s.
	 Take the limit as ∆x (0
	 Differentiate again
	This is the one-dimensional wave equation
	 Rewrite:
	Change variables:
	Solutions are of the form
	The functions u(·) and v(·) may be regarded as basis functions for the solution set.  
	Alternatively, they may be regarded as combinations of other basis functions, e.g. sinusoids.

	 The function u(x + ct) is a wave of shape u(x) traveling rightward (e.g. the "fore wave") at speed c.  
	Function v(x – ct) is a wave of shape v(x) traveling leftward (e.g. the "back wave") at speed c.
	Now consider only the right going or fore wave, u(x + ct).  
	In general we expect power to be proportional to the square of its magnitude.  
	Thus the power transported to the right Pu  u2(g).  
	By a similar argument the power transported to the left Pv  v2(h).  
	The net power transported to the right, P  u2(g) – v2(h).  
	 But we may express power transport as a product P = e(x,t)f(x,t) so 
	Therefore if 
	then
	 It is important to recognize that, despite terminology, the change of variables 
	may be introduced independent of any assumptions used to define wave behavior (e.g., infinite continuous line, etc.)



