NONLINEAR MECHANICAL SYSTEMS

CANONICAL TRANSFORMATION S AND NUMERICAL
INTEGRATION
Jacobi Canonical Transformations

A Jacobi canonical transformations yields a
Hamiltonian that depends on only one of the
conjugate variable sets.

Assume dependence on new momentum alone.
H(p*q*) = K(p*)
dK(p*)/oq* =0
Thus
dp*/dt =e*
dq*/dt = oK(p*)/ op* - £*
The simple relation between effort and the rate of

change of momentum is recovered in the new
coordinates.
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EXAMPLE: SIMPLE HARMONIC OSCILLATOR

Hamiltonian

1
H(p,q) = 5(p2/1+q2/C)

Hamilton's equations
dq/dt=0H/dp =p/I
dp/dt=-0H/oq=q/C

Change variables from old (q,p) to new (P,Q)
Define Zg = \/E and the generating function

S(q,Q) = Zo(q2/2) cotQ
The transformation equations are

p =05/0q = Zoq cotQ
P =-05/0Q = Zo(q2/2)/sin2Q
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Express the old variables in terms of the new

p= \/ﬁ’ cosQ \/70
q=1/2P sinQ (1/~/Zo)

Define wg =+/1/IC and the new Hamiltonian is
H(P,Q) = wo P = K(P)

Hamilton’s equations in the new coordinates
dQ/dt =0K/0P = oo
dP/dt=-0K/0Q =0

Their solution is
Q(t) = wo t + constant

P(t) = constant
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In essence this variable change has integrated the
equations.

As the product of P and Q has the units of action
(energy by time) it is sometimes called a (simple
harmonic) actional transformation.

PHYSICAL INTERPRETATION:
P is proportional to the total system energy.
Its square root is proportional to oscillation amplitude.

Q is the phase angle of the oscillations.
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In general, finding Jacobi canonical transformations
requires solving a non-trivial partial differential
equation.

A practical alternative is to separate the Hamiltonian
into two parts, one with a known Jacobi canonical
transform.

H(p,q) = Hi(p,q) + Ha(p,9)
Apply the known Jacobi canonical transformation
H*(P,Q) = Hj*(P) + H*(P,Q)
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We may represent the second term as a set of canonical
forces

e*(P,Q) = -0H*»/0Q
*(P,Q) = -0H*,/ P
The transformed equations become
dP/dt = e*(P,Q)
dQ/dt = 6H*;/oP - £*(P,Q)
An advantage of this change of variables is that, in

effect, it integrates the fundamental oscillatory mode
of the solution.
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EXAMPLE: SIMPLE PENDULUM

For large amplitudes, the simple pendulum is a
nonlinear oscillator.

H(",0) =n2/2+1 - cos 6
where
0 angle with respect to the vertical

n corresponding angular momentum

Expand the cosine as a power series
H(n,0) =n2/2+02/2 -04/4! +06/6! - ...

The Hamiltonian is quadratic in momentum and
displacement with additional terms in displacement
of fourth power and higher.
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Until the fourth power of the angle in radians
becomes significant,

the nonlinear pendulum may be treated as linear
system

with a Hamiltonian that is quadratic in momentum
and displacement.

For the quadratic terms have a knownJacobi canonical
transformation: the simple harmonic actional.

Split the Hamiltonian as follows
H(",0) =n2/2+62/2 + (1 - cosd - 02/2)
H(n,0) = K(n,0) + N(n,6)
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Apply the simple harmonic actional

6=\/E’ sinQ
n =\/f’ cosQ

The Hamiltonian becomes
H*(P,Q) = K*(P) + N*(P,Q)

In the original variables, the system equations are
dn/dt=-0H/00
d6/dt =JdH/on

In the new variables, the system equations become
dP/dt =-0N*/0Q
dQ/dt =1+ oN*/oP
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Transformation does not change the value of either K
or N.

Use the chain rule on the original N which depends
only on 6.

ON*/0Q = (0N /00) (00/0Q)
ON* /0P = (6N /00) (00/ oP)
0N/ 00 = sinb - 0
00/0Q = \/ﬁj cosQ
00/ 0P = sinQ (1/~/2P )
The transformed equations become
dP/dt = [\/ﬁ’ sinQ - sin(\/i’ sinQ)][\/E’ cosQ]
dQ/dt =1+ [sin(x/2P sinQ) —~/2P sinQ][sinQ (1//2P )]
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Use the transformation equations to express the
rates of change as a function of both old and new
variables.

dP/dt = (6 - sinB)n
dQ/dt=1 + (sin® - 6)0/2P

6=\/E’ sinQ
n =\/i’ cosQ

What have we gained?

The system equations are simpler in the old
variables

dn/dt = -sin6
do/dt=n

In the new variables, the solution is far more stable
numerically.
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Simple Euler integration algorithm

starting time 0 seconds, final time 50 seconds, time
step 0.1 seconds.

start from rest at an angle of 0.1 radians (=6°)

In old coordinates, simulation is unstable.

Total system energy grows exponentially.

Lagrangian formulation
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In new coodinates, the simulation is stable.

Total system energy variation: 5.6x10-7.

Hamilton-Jacobi formulation
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Perform the same integration using a third-order
fixed-step Runge-Kutta algorithm.

Lagrangian formulation

0.1 T \
2 0.05r .
o
e]
Y
s Or i
Q
(@]
& -0.05 - .
_01 | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50
time in seconds
x 10~ Lagrangian formulation
5 T T T
4.995 .
>
(@)
o 4.99 i
c
()]
© 4.985 .
e
4.98 i
1 1 1

4.975 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

time in seconds

Total energy, declines steadily by 2.1x10-5 over 50
seconds.
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Hamilton-Jacobi formulation
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Total energy also decreases, but by 2.3x10-10 — a
hundred thousand time less.

Mod. Sim. Dyn. Sys. Transforms & Numerical Integration page 15



Start the pendulum from rest at 1 radian (*57°) and use
the same integration algorithm and parameters

Lagrangian formulation
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Again, the transformed equations produce a smaller
decline in energy, though the difference is less
pronounced — 8.8x10-4 vs. 1.5x10-4.
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Start from rest at 5° off vertically upright (3.05 radians)
and use the same integration algorithm and parameters

Lagrangian formulation
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Now the original formulation is unstable — energy
increases by 1.3x10-3 in 50 seconds. The transformed
equations yield a decline of energy of 3.1x10-3.
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Start from the same initial conditions but use MATLAB’s
ode23, a 3rd-order adaptive Runge-Kutta algorithm with
error tolerance of 1.0x10-3

Lagrangian formulation
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Now the steady increase in computed total energy in the
original formulation results in a major departure of the
computed angle from what it should be

— the simulation claims that after one oscillation the
pendulum will spin continuously in one direction.
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Hamilton-Jacobi formulation

angle in radians
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The transformed equations do not exhibit this behavior,

though the computed energy declines substantially

(9.3x10-2 in 50
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POINTS:

* Never believe anything you get from a computer.
Find some way of cross checking the results. One
effective method is to compute a known invariant, in

this case energy.

e The equations in the original variables may look
simpler, but that is deceptive. In fact the transformed

equations have been partially integrated by the
transformation and so present a less demanding task

to the integration algorithm.

* A little analysis up front can have a dramatic effect
on the accuracy of numerical computations.
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