
EXAMPLE: THERMAL DAMPING 

air sealed
outlet

work in

 

A BICYCLE PUMP WITH THE OUTLET SEALED.  

When the piston is depressed, a fixed mass of air is 
compressed.  

—mechanical work is done. 

The mechanical work done on the air is converted to 
heat.  

—the air temperature rises 

A temperature difference between the air and its 
surroundings induces heat flow. 

—entropy is produced 

The original work done is not recovered when the 
piston is withdrawn to the original piston. 

—available energy is lost 
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MODEL THIS SYSTEM 

GOAL:  

the simplest model that can describe thermal damping 
(the loss of available energy) 

ELEMENTS: 

TWO KEY PHENOMENA 

work-to-heat transduction 
a two port capacitor represents thermo-mechanical 
transduction 

entropy production 
a two port resistor represents heat transfer and 
entropy production 

BOUNDARY CONDITIONS: 

For simplicity assume 
a flow source on the (fluid-)mechanical side 
a constant temperature heat sink on the thermal side 
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A BOND GRAPH IS AS SHOWN. 

R
Tgas To

dSo/dt
C

P

–dV/dt dSgas/dt
Sf Se0 :ToQ(t):

(fluid)
mechanical

domain
thermal
domain  

CAUSAL ANALYSIS: 

The integral causal form for the two-port capacitor 
(pressure and temperature outputs) 

is consistent with the boundary conditions 
and with the preferred causal form for the resistor 
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CONSTITUTIVE EQUATIONS: 

Assume air is an ideal gas and use the constitutive 
equations derived above. 
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Assume Fourier’s law describes the heat transfer 
process. 

Q̇  = 
kA

l  (T1 - T2)   
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ANALYSIS: 

For simplicity, linearize the capacitor equations about 
a nominal operating point defined by So and Vo 
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Inverse capacitance: 
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equality of the off-diagonal terms (the crossed partial 
derivatives) is established using ooo mRTVP =  

Linearized constitutive equations 
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where  

δS = S - So, δV = V - Vo,  

δT = T - To(So,Vo), δP = P - Po(So,Vo) 
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NETWORK REPRESENTATION 

The linearized model may be represented using the 
following bond graph 

TF 01
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This representation shows that  

in the isothermal case ( 0T =δ ) the fluid capacitance 
is oofluid PVC =  

in the constant-volume case ( 0V =δ & ) the thermal 
capacitance is ovthermal TmcC =  
the strength of thermo-fluid coupling is oo PT  

 
This uses the convention that the transformer coefficient is 
for the flow equation with output flow on the output 
power bond 
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though causal considerations may require the inverse 
equations. 
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ALTERNATIVELY: 

It may be useful to express the parameters in term of 
easily-measured reference variables To and Vo as 
follows 
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This representation shows that the strength of the 
coupling is mRVo  

proportional to the (nominal) gas volume 
inversely proportional to the mass of gas 

S
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RESISTOR EQUATIONS 

The two-port resistor constitutive equations are 
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Linearize the resistor constitutive equations about a 
nominal operating point defined by T1o and T2o
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This is in conductance form, Gef =  
Note that this conductance matrix is singular: 

0
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this is because both entropy flows are associated 
with the same heat flow 
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LINEARIZE ABOUT ZERO HEAT FLOW 

If the two nominal operating temperatures are equal, 
, the linearized constitutive equations are oo2o1 TTT ==
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This simple form can be represented by an equally 
simple bond graph 
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This follows the usual convention of writing the resistor 
parameter in resistance form 
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ASSEMBLE THE PIECES… 

LINEARIZED BOND GRAPH 
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Note the sign change on the capacitor thermal port (to 
avoid a superfluous 0-junction) 

Causal assignment indicates a first-order system 
Time-constant is determined by thermal 
(conduction) resistance and thermal capacitance 
Gas pressure is determined by fluid capacitance and 
(reflected) thermal capacitance and resistance 
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INCLUDE PISTON INERTIA 

BOND GRAPH 
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Causal analysis indicates 

a third-order system 
capable of resonant oscillation 

In this model the only damping is in the thermal 
domain 

heat transfer, entropy flow 
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SUMMARIZING 

THE GAS STORES ENERGY. 

It also acts as a transducer because there are two ways 
to store or retrieve this energy 

—two interaction ports 

energy can be added or removed as work or heat. 

The “energy-storing transducer” behavior is modeled 
as a two-port capacitor. 

—just like the energy-storing transducers we 
examined earlier. 
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IF POWER FLOWS VIA THE THERMAL PORT, AVAILABLE ENERGY 
IS REDUCED 

—the system also behaves as a dissipator.  

The dissipative behavior is due to heat transfer.  
Gas temperature change due to compression and 
expansion does not dissipate available energy. 

If the walls were perfectly insulated,  
no available energy would be lost,  
but then, no heat would flow either.  

Without perfect insulation temperature gradients 
induce heat flow 

Heat flow results in entropy generation.  
Entropy generation means a loss of available 
energy.  

THE SECOND LAW. 
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DISCUSSION 

ALL MODELS ARE FALSE. 

It is essential to understand what errors our models 
make, and when the errors should not be ignored. 

It is commonly assumed that modeling errors become 
significant at higher frequencies. 

—not so! 

Compression and expansion of gases is common in 
mechanical systems.  

Hydraulic systems typically include accumulators 
(to prevent over-pressure during flow transients). 

The most common design uses a compressible gas.  
Compression and expansion of the gas can dissipate 
(available) energy. 
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This dissipation requires heat flow, but heat flow 
takes time.  

For sufficiently rapid compression and expansion, 
little or no heat will flow, and little or no 
dissipation will occur.  

The simplest model of a gas-charged accumulator may 
justifiably ignore “thermal damping”. 

That is an eminently reasonable modeling decision 
but that model will be in error  

at low frequencies 
not high frequencies.  

 

THIS IS A GENERAL CHARACTERISTIC OF PHENOMENA DUE TO 
THERMODYNAMIC IRREVERSIBILITIES.  
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	EXAMPLE: THERMAL DAMPING
	A bicycle pump with the outlet sealed. 
	When the piston is depressed, a fixed mass of air is compressed. 
	—mechanical work is done.

	The mechanical work done on the air is converted to heat. 
	—the air temperature rises

	A temperature difference between the air and its surroundings induces heat flow.
	—entropy is produced

	The original work done is not recovered when the piston is withdrawn to the original piston.
	—available energy is lost



	MODEL THIS SYSTEM
	Goal: 
	the simplest model that can describe thermal damping
	(the loss of available energy)


	Elements:
	Two key phenomena
	work-to-heat transduction
	a two port capacitor represents thermo-mechanical transduction

	entropy production
	a two port resistor represents heat transfer and entropy production


	Boundary conditions:
	For simplicity assume
	a flow source on the (fluid-)mechanical side
	a constant temperature heat sink on the thermal side


	A bond graph is as shown.
	Causal analysis:
	The integral causal form for the two-port capacitor (pressure and temperature outputs)
	is consistent with the boundary conditions
	and with the preferred causal form for the resistor


	Constitutive equations:
	Assume air is an ideal gas and use the constitutive equations derived above.
	Assume Fourier’s law describes the heat transfer process.


	ANALYSIS:
	For simplicity, linearize the capacitor equations about a nominal operating point defined by So and Vo
	   
	Inverse capacitance:  
	Linearized constitutive equations
	where 


	NETWORK REPRESENTATION
	The linearized model may be represented using the following bond graph
	 
	This representation shows that 
	in the isothermal case ( ) the fluid capacitance is  
	in the constant-volume case ( ) the thermal capacitance is  
	the strength of thermo-fluid coupling is  



	ALTERNATIVELY:
	It may be useful to express the parameters in term of easily-measured reference variables To and Vo as follows
	 
	This representation shows that the strength of the coupling is  
	proportional to the (nominal) gas volume
	inversely proportional to the mass of gas



	RESISTOR EQUATIONS
	The two-port resistor constitutive equations are
	Linearize the resistor constitutive equations about a nominal operating point defined by T1o and T2o
	This is in conductance form,  
	Note that this conductance matrix is singular:
	this is because both entropy flows are associated with the same heat flow



	LINEARIZE ABOUT ZERO HEAT FLOW
	If the two nominal operating temperatures are equal,  , the linearized constitutive equations are
	This simple form can be represented by an equally simple bond graph
	 


	ASSEMBLE THE PIECES…
	Linearized bond graph
	Causal assignment indicates a first-order system
	Time-constant is determined by thermal (conduction) resistance and thermal capacitance
	Gas pressure is determined by fluid capacitance and (reflected) thermal capacitance and resistance



	INCLUDE PISTON INERTIA
	Bond graph
	Causal analysis indicates
	a third-order system
	capable of resonant oscillation

	In this model the only damping is in the thermal domain
	heat transfer, entropy flow



	SUMMARIZING
	The gas stores energy.
	It also acts as a transducer because there are two ways to store or retrieve this energy
	—two interaction ports

	energy can be added or removed as work or heat.
	The “energy-storing transducer” behavior is modeled as a two-port capacitor.
	—just like the energy-storing transducers we examined earlier.


	If power flows via the thermal port, available energy is reduced
	—the system also behaves as a dissipator. 
	The dissipative behavior is due to heat transfer. 
	Gas temperature change due to compression and expansion does not dissipate available energy.

	If the walls were perfectly insulated, 
	no available energy would be lost, 
	but then, no heat would flow either. 

	Without perfect insulation temperature gradients induce heat flow
	Heat flow results in entropy generation. 
	Entropy generation means a loss of available energy. 


	The second law.

	DISCUSSION
	All models are false.
	It is essential to understand what errors our models make, and when the errors should not be ignored.
	It is commonly assumed that modeling errors become significant at higher frequencies.
	—not so!

	Compression and expansion of gases is common in mechanical systems. 
	Hydraulic systems typically include accumulators (to prevent over-pressure during flow transients).

	The most common design uses a compressible gas. 
	Compression and expansion of the gas can dissipate (available) energy.

	This dissipation requires heat flow, but heat flow takes time. 
	For sufficiently rapid compression and expansion, little or no heat will flow, and little or no dissipation will occur. 

	The simplest model of a gas-charged accumulator may justifiably ignore “thermal damping”.
	That is an eminently reasonable modeling decision but that model will be in error 
	at low frequencies
	not high frequencies. 


	This is a general characteristic of phenomena due to thermodynamic irreversibilities. 


