Contact instability

 Problem:

— Contact and interaction with objects couples their dynamics into the
manipulator control system

— This change may cause instability

» Example:
— 1ntegral-action motion controller
— coupling to more mass evokes instability

— Impedance control affords a solution:

» Make the manipulator impedance behave like a passive physical

system

Hogan, N. (1988) On the Stability of Manipulators Performing Contact
Tasks, IEEE Journal of Robotics and Automation, 4: 677-686.
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Example: Integral-action motion controller

System:

Mass restrained by linear spring &
damper, driven by control actuator &
external force

Controller:

Integral of trajectory error

System + controller:

Isolated stability:

Mod. Sim. Dyn. Sys.

Stability requires upper bound on
controller gain

(ms® +bs+k)x=cu-f
X C

u ms’+bs+k

uzg(r—x)
S

(ms® +bs® +ks+cg)x =cgr-sf
X cg

r ms +bs®+ks+cg

s: Laplace variable

x: displacement variable
bk > f: external force variable
-8 u: control input variable
cm r: reference input variable

m: mass constant

b: damping constant

k: stiffness constant

c: actuator force constant

g: controller gain constant
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Example (continued)

* Object mass: f=m eS2 X m,: object mass constant
3 2
* Coupled system: [((m+m,)s” +bs” +ks+cg]x=cgr
X cg

r _(m+me)s3+bs2+ks+cg

* Coupled stability: bk >cg(m+m,)

» Choose any positive controller gain bk

that will ensure isolated stability: cm 8
» That controlled system is bk
- ) m, > ——m
destabilized by coupling to a ° cg

sufficiently large mass
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Problem & approach

* Problem:
— Find conditions to avoid instability due to contact & interaction
* Approach:

— Design the manipulator controller to impose a desired interaction-port
behavior

— Describe the manipulator and its controller as an equivalent physical
system

— Find an (equivalent) physical behavior that will avoid contact/coupled
instability

» Use our knowledge of physical system behavior and how it is
constrained
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General object dynamics

e Assume: L(qeﬂqe): E;(qeﬂqe)_Ep(qe)
— Lagrangian dynamics d( oL oL -
— Passive a[aqej_ aq. =P, - De(qeaqe)

— Stable in isolation

p. = 0L/dq, = GE; /oq,

* Legendre transform: E.(p..q.)=p.d. - E.(q.,9.)
— Kinetic co-energy to kinetic
energy H,(p..q.)=p:d. - L(a..9.)
— Lagrangian form to Hamiltonian
for%n g qe - 8He/aF)e
pe = _aHe/aqe o De + Pe
» Hamiltonian = total system energy g.: (generalized) coordinates
L: Lagrangian
E,": kinetic co-energy
He (pe > qe ) = Ek (pe > qe ) + Ep (qe ) El;: potential energy

D.: dissipative (generalized) forces
P.: exogenous (generalized) forces
H,: Hamiltonian
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Sir William Rowan Hamilton

William Rowan Hamilton
— Born 1805, Dublin, Ireland
— Knighted 1835

— First Foreign Associate elected to
U.S. National Academy of Sciences

— Died 1865

e Accomplishments
— Optics
— Dynamics
— Quaternions
— Linear operators
— Graph theory

— ...and more

— http://www.maths.tcd.ie/pub/
HistMath/People/Hamilton/
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Passivity

« Basic 1dea: system cannot supply power indefinitely
— Many alternative definitions, the best are energy-based

hd Wyatt et al. (198 1) Wyatt, J. L., Chua, L. O., Gannett, J. W.,
. . Goknar, 1. C. and Green, D. N. (1981)
« Passive: total system energy 1s lower-bounded Energy Concepts in the State-Space Theory

of Nonlinear n-Ports: Part | — Passivity.

— More precisely, available energy is lower-bounded  IEEE Transactions on Circuits and Systems,
Vol. CAS-28, No. 1, pp. 48-61.

« Power flux may be positive or negative
« Convention: power positive in
— Power in (positive)—no limit
— Power out (negative)—only until stored energy exhausted

* You can store as much energy as you want but you can withdraw only
what was initially stored (a finite amount)

» Passivity # stability
— Example:

 Interaction between oppositely charged beads, one fixed, on free to
move on a wire
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Stability

e Stability:
— Convergence to equilibrium
e Use Lyapunov’s second method
— A generalization of energy-based analysis
— Lyapunov function: positive-definite non-decreasing state function

— Sufficient condition for asymptotic stability: Negative semi-definitive rate
of change of Lyapunov function

« For physical systems total energy may be a useful candidate Lyapunov
function

— Equilibria are at an energy minima
— Dissipation = energy reduction = convergence to equilibrium
— Hamiltonian form describes dynamics in terms of total energy
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Steady state & equilibrium

« Steady state: g.=0=0H,/op. = E, /dp,

— Kinetic energy is a positive-definite OE, / op.,=0=p.,=0
non-decreasing function of
generalized momentum

e Assume: p.=0=-0H./oq. — D, +P,
— Dissipative (internal) forces vanish Assume D,(0,q.)=0
in steady-state

« Rules out static (Coulomb) Isolated = P, =0

friction OoH, _OE, N OE,
— Potential energy is a positive- 0q. 0,=0 B 0q. 0,=0 aq.
definite non-decreasing function of © ©
generalized displacement OE, . OH, _ aEp
« Steady-state is a unique oq, 0.0 - oq, 0.0 oq.

equilibrium configuration
a . . g 8Ep/8qe=02>qe=0
» Steady state is equilibrium at the

origin of the state space {p,,d.}
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Notation

« Represent partial derivatives using T OH,
subscripts eq aq.
 H_1sascalar oH
— the Hamiltonian state function Hep = ﬁp:
* H, isavector
e deneat 6=l
* H, is avector P. = —Heq(pe,qe)— D. (pe,qe)+ Pe

— Partial derivatives of the Hamiltonian
w.r.t. each element of p,
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Isolated stability

* Use the Hamiltonian as a Lyapunov dH, /dt = ngqe T Héppe

function t t
dH./dt=H H.+H (-H._ -D_+P
— Positive-definite non-decreasing e/ cq" “cp ep( eq e e )

function of state dH, /dt=q.P. —q.D,
— Rate of change of stored energy =
ower in — power dissipated
po " P : Isolated= P, =0
« Sufficient condition for asymptotic

stability: ~.dH,/dt =-¢.D,

— Dissipative generalized forces are a t
positive-definite function of q.D. > 0= dHe/ dt<0 Vp,#0

generalized momentum
* Dissipation may vanish if p, =0
and system is not at equilibrium
« But p, = 0 does not describe any
system trajectory
— LaSalle-Lefshetz theorem

— Energy decreases on all non-
equilibrium system trajectories
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Physical system interaction

* Interaction of general dynamic » Interaction of physical systems
systems — Ifu; and y; are power conjugates
— Many possibilities: cascade, — G, are impedances or admittances
parallel, feedback... — Power-continuous connection:
. Y1 = Gl(s)ul e P . led
« Two linear systems: ower 1nto coupled system
vy, =G, (S)le must equal net power into

component systems
» (Cascade coupling Y3 =Y,

equations: U, = u3y; =0y, +u,y,
2= Y
u; =uy
e Combination: Y3 = G3(S)u3

G, (S) =G, (S)Gl (S)

* Not power-continuous

iUz # you, +yuy
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Interaction port

» Assume coupling occurs at a set of
points on the object X,

This defines an interaction port

X, is as a function of generalized X, = Le(qe)
coordinates

Generalized velocity determines V. = J.(d, ).
port velocity

Port force determines generalized P, = J;(qe)Fe
force

» These relations are always well-
defined

Guaranteed by the definition of
generalized coordinates

Mod. Sim. Dyn. Sys. Interaction Stability
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Simple impedance

» Target (ideal) behavior of manipulator F,= K(Xz - X, ) + B(Vz)

— Elastic and viscous behavior

=H +B(V,) d,=X,-X
e In Hamiltonian form: P2 =P @,)+B(V,) HZ ‘ KO ;
— Hamiltonian = potential energy q,=V, -V, z (qz ) - I (qZ) g,
— Assume V_= 0 for stability analysis F,=p,
~ [Isolated: V, =0orF, =0 V, =V, =0= q, = constant = F, = constant
— Sufficient condition for isolated . .
asymptotic stability: F,=0=H,=-B.. dHZ/dt =H,4,=-B4q,
thz >0 VV, =0
. : : : : L e
Unconstrained mass in Hamiltonian q. =H,, (p.) H.(p.)= 'piM7'p,
form _F
— Hamiltonian = kinetic energy Pe =F.
—  Arbitrarily small mass Ve =0,
* Couple these with common velocity V.=V,
t t
F.V.+F,V, =
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Mass coupled to simple impedance

Hamiltonian form H(p..q,)=H.(p.)+H,(q,)
— Total energy = sum of components pe=—H, (9,)- B(H o (pe))
qz = Htp (pe)

» Assume positive-definite, non-
decreasing potential energy

— Equilibrium at (p,,q,) = (0,0)
dHt/dt = H:ppe + H:qqz
dH,/dt=-H{H, —H,B+H{H =-¢.B

z

« Rate of change of Hamiltonian:

 Sufficient condition for asymptotic ¢.B>0 Vp, =0
stability

— And because mass is
unconstrained, stability is global
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General object coupled to simple impedance

Il
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 Total Hamiltonian (energy) is sum H,(p..q,)

of components H,(p..q.) = Ey(P.d)+ B, (a.)+ H, (L (a.) - X,)
e Assume

— Both systems at equilibrium

— Interaction port positions coincide

at coupling . )
dHt/dt—HZqJeH +HHe, —He, H

» Total energy is a positive-definite, ep’ Teq

non-decreasing state function ~H,D, - Hep‘JeH - Hep'JeB

» Rate of change of energy: dH, /dt = -q.B

* The previous conditions sufficient for stability of
— Object in isolation
— Simple impedance coupled to arbitrarily small mass
« ...ensure global asymptotic coupled stability
— Energy decreases on all non-equilibrium state trajectories
— True for objects of arbitrary dynamic order
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Simple impedance controller implementation

 Robot model:

— Inertial mechanism, statically
balanced (or zero gravity), effort-
controlled actuators

* Hamiltonian = kinetic energy
e Controller:

— Transform simple impedance to
manipulator configuration space

* Controller coupled to robot:

— Same structure as a physical
system with Hamiltonian H_

H,=H_, +H,

Mod. Sim. Dyn. Sys.

Interaction Stability

O = Honp H, =505l (AP,
P =-Hp —Dn+P, + JF

Vo = 3,0

X =Ln(dy)

On =Hg
— t t
pm - _ch - Dm - ‘JmB + ‘JmFm
Vm = qum q,,: generalized coordinates
(configuration variables)
Xm = I—m(qm) p,,: generalized momenta

H,: Hamiltonian

I: inertia

D,: dissipative (generalized) forces

P,: actuator (generalized) forces

X,»V,,nF: interaction port position,
velocity, force

L,..J,.: kinematic equations, Jacobian
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Simple impedance controller 1solated stability

t t t
dH,/dt = H.H, -HHe —Hep P

» Rate of change of Hamiltonian:

* Energy decreases on all non- —HJB+HJLE,
equilibrium trajectories if
AL TOTIUm ) dH_/dt=-¢'D_~V!B+V'F.
— System is isolated F_ =0 t t
— Dissipative forces are positive- Fn=0=dH /dt=-q,D,,-V,B

definite q.D._>0,V.B>0 Vp_#0

* Minimum energy is at q,=0,X_ =X  ,
— But this may not define a unique
manipulator configuration

— Hamiltonian is a positive-definite

Assume:
— Non-redundant mechanism

— Non-singular Jacobian

non-decreasing function of g, but  Then
usue-llly not Of. configuration g, — Hamiltonian is positive-definite &
. Interactl.on—port impedance may not non-decreasing in a region about
control internal degrees of freedom q, =L"(X,)

— Could add terms to controller but
for simplicity...

Local asymptotic stability
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Simple impedance controller coupled stability

« Coupling kinematics A =0, (0.0e)

— Coupling relates q,,, to g, but no
need to solve explicitly

— Total Hamiltonian (energy) is sum H, = H.(p,,q.)+H.(p,,.0,,)
of components

» Rate of change of Hamiltonian
dH, /dt = H! H, +H. (-H, —D,+J'F,)  dH,/dt=-q'D, +q'JF, —a",(D,, +I4B)+ ' I Fo
FHLH +HS (FH —D, —J.B+J4F, ) dH,/dt=—qD, + V/F, —q',D,, - VLB +V.F,,

« Coupling cannot generate power V.F, +V,F, =0
~.dH,/dt=-q.D, -q; D, -V.B
* The previous conditions sufficient for stability of

— Object in isolation
— Simple impedance controlled robot

« ...ensure local asymptotic coupled stability
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Kinematic errors

« Assume controller and interaction p - _Jt{K(’[(qm)_ X, )- B(qu)}
port kinematics differ
— Controller kinematics maps X = ’E(q );t L (q )
configuration to a point X " e

— Corresponding potential function  {f (g _)=H_(§,)=H ([(q )- X )
is positive-definite, non-decreasing o o ’ " °

in a region about g, =L '(X,)
* Assume self-consistent controller  5f"/aq =73
kinematics

— the (erroneous) Jacobian is the
correct derivative of the

erroneous) kinematics e~ ot oL i me o
( ) df, /dt = H, ¢, = H Jg, =H ¥V
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Kinematic errors (continued)

« Hamiltonian of this controller H (P> )= Hpn(Pr»0m )+ H,(@,)
coupled to the robot i, (0,0, ) = H,, (0.0, )+ H,(L(q,,)- X, )
. . . qm = Hmp
— Hamiltonian state equations - -
P, = —qu -D,, - .JtHZq ~-J'B+ JInFm

Y t ¥ t
dHc/dt=HZqJHmp+quHmp
#H (-H,, -D, -JH, -IB+IF,)
df, /dt=-q D, - V'B+J\F,
— In 1solation F —=0=dH /dt:—th - V'B

— Rate of change of the Hamiltonian

* Previous conditions on D & B are
sufficient for isolated local
asymptotic stability
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Insensitivity to kinematic errors

e The same conditions are also
sufficient to ensure local

asymptotic coupled stability H, =Ey(p..d.)+ E,(d.)+
— Coupled system Hamiltonian and ~ H,, (PO )+ H, (L(qm )-X, )
its rate of change: dﬁt/dt --¢'D,-¢.D, - V'B

« Stability properties are insensitive
to kinematic errors

— Provided they are self-consistent
* Note that these results do not
require small kinematic errors

— Could arise when contact occurs at
unexpected locations

— e.g., on the robot links rather than
the end-point
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Parallel & feedback connections

* Power continuity

» Parallel connection equations
» Power balance
—OK

* Feedback connection equations
« Power balance
—OK

iUz =Yyou, + YU

Y3 =1y, Yy,
Uz =uU =

y3u; =Ly,u, Ty,
Ys3=¥1=U,
U =us;—Yy,

Uy =u3y; — YU,
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Summary remarks

* Interaction stability « Structure matters
— The above results can be extended — Dynamics of physical systems are
« Neutrally stable objects constrained in useful ways
« Kinematic constraints « It may be beneficial to impose
— no dynamics physical system structure on a
« Interface dynamics general dynamic system
— e.g., due to sensors — e.g. arobot controller

— A “simple” impedance can provide
a robust solution to the contact
instability problem
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Some other Irishmen of note

» Bishop George Berkeley

* Robert Boyle

« John Boyd Dunlop

» George Francis Fitzgerald

« William Rowan Hamilton

« William Thomson (Lord Kelvin)
e Joseph Larmor

* Charles Parsons

* Osborne Reynolds

* George Gabriel Stokes
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