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Chapter 9 

Force and Compliance Controls 
 

A class of simple tasks may need only trajectory control where the robot end-effecter is 
moved merely along a prescribed time trajectory. However, a number of complex tasks, including 
assembly of parts, manipulation of tools, and walking on a terrain, entail the control of physical 
interactions and mechanical contacts with the environment. Achieving a task goal often requires 
the robot to comply with the environment, react to the force acting on the end-effecter, or adapt 
its motion to uncertainties of the environment. Strategies are needed for performing those tasks.  

Force and compliance controls are fundamental task strategies for performing a class of 
tasks entailing the accommodation of mechanical interactions in the face of environmental 
uncertainties. In this chapter we will first present hybrid position/force control: a basic principle 
of strategic task planning for dealing with geometric constraints imposed by the task environment. 
An alternative approach to accommodating interactions will also be presented based on 
compliance or stiffness control. Characteristics of task compliances and force feedback laws will 
be analyzed and applied to various tasks.  

 
  

9.1 Hybrid Position/Force Control 
   
9.1.1 Principle 

To begin with let us consider a daily task. Figure 9.1.1 illustrates a robot drawing a line 
with a pencil on a sheet of paper. Although we humans can perform this type of task without 
considering any detail of hand control, the robot needs specific control commands and an 
effective control strategy. To draw a letter, “A”, for example, we first conceive a trajectory of the 
pencil tip, and command the hand to follow the conceived trajectory. At the same time we 
accommodate the pressure with which the pencil is contacting the sheet of paper. Let o-xyz be a 
coordinate system with the z-axis perpendicular to the sheet of paper. Along the x and y axes, we 
provide positional commands to the hand control system. Along the z-axis, on the other hand, we 
specify a force to apply. In other words, controlled variables are different between the horizontal 
and vertical directions. The controlled variable of the former is x and y coordinates, i.e. a position, 
while the latter controlled variable is a force in the z direction. Namely, two types of control loops 
are combined in the hand control system, as illustrated in Figure 9.1.2. 
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Figure 9.1.1 Robot drawing a line with a pencil on a sheet of paper 

Department of Mechanical Engineering  Massachusetts Institute of Technology 



Introduction to Robotics, H. Harry Asada 2

 
 
 

+ 
 
 
 Position 

Reference  
 
 
 Force 

Reference  
 
 
 

 
 The above e
different control loo
constraint imposed t
the task objective is
obtain a general prin
geometric constrain
derive a basic princi
 
Example 9.1 
 Shown belo
the vertical direction
process is quasi-stat
referred to as C-fram
a proper control mod
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Department of Mechanic
 

 
Position Control 

xamp
ps in 
o the 
 more
ciple

ts and
ple be

w is a
 with

ic in t
e, is 
e for

al Eng
Robot  Controlled 
Variables 
+

Force Control 

 

Figure 9.1.2 Position and force control loops 

le is one of the simplest tasks illustrating the need for integrating 
such a way that the control mode is consistent with the geometric 
robot system. As the geometric constraint becomes more complex and 
 involved, an intuitive method may not suffice. In the following we will 
 that will help us find proper control modes consistent with both 
 task objectives. Let us consider the following six-dimensional task to 
hind our heuristics and empiricism. 

 task to pull up a peg from a hole. We assume that the peg can move in 
out friction when sliding in the hole. We also assume that the task 
hat any inertial force is negligibly small. A coordinate system O-xyz, 
attached to the task space, as shown in the figure. The problem is to find 
 each of the axes: three translational and three rotational axes.  
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Figure 9.1.3  Pulling up a peg from a hole 
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 The key question is how to assign a control mode, position control or force control, to 
each of the axes in the C-frame in such a way that the control action may not conflict with the 
geometric constraints and physics. M. Mason addressed this issue in his seminal work on hybrid 
position/force control. He called conditions dictated by physics Natural Constraints, and 
conditions determined by task goals and objectives Artificial Constraints. Table 9.1.1 summarizes 
these conditions.  

From Figure 9.1.3 it is clear that the peg cannot be moved in the x and y directions due to 
the geometric constraint. Therefore, the velocities in these directions must be zero: 

. Likewise, the peg cannot be rotated about the x and y axes. Therefore, the angular 

velocities are zero: . These conditions constitute the natural constraints in the 
kinematic domain. The remaining directions are linear and angular z axes. Velocities along these 
two directions can be assigned arbitrarily, and may be controlled with position control mode. The 
reference inputs to these position control loops must be determined such that the task objectives 
may be satisfied. Since the task is to pull up the peg, an upward linear velocity must be given: 

. The orientation of the peg about the z-axis, on the other hand, doesn’t have to be 
changed. Therefore, the angular velocity remains zero: 

0,0 == yx vv
0,0 == yx ωω

0>=Vvz

0=zω . These reference inputs constitute 
the artificial constraints in the kinematic domain.  
  

Table 9.1.1 Natural and artificial constraints of the peg-in-the-hole problem 
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In the statics domain, forces and torques are specified in such a way that the quasi-static 
condition is satisfied. This means that the peg motion must not be accelerated with any 
unbalanced force, i.e. non-zero inertial force. Since we have assumed that the process is friction-
less, no resistive force acts on the peg in the direction that is not constrained by geometry. 
Therefore, the linear force in the z direction must be zero: 0=zf . The rotation about the z axis, 
too, is not constrained. Therefore, the torque about the z axis must be zero: 0=zτ . These 
conditions are dictated by physics, and are called the natural constraints in the statics domain. The 
remaining directions are geometrically constrained. In these directions, forces and torques can be 
assigned arbitrarily, and may be controlled with force control mode. The reference inputs to these 
control loops must be determined so as to meet the task objectives. In this task, it is not required 
to push the peg against the wall of the hole, nor twist it. Therefore, the reference inputs are set to 

Department of Mechanical Engineering  Massachusetts Institute of Technology 



Introduction to Robotics, H. Harry Asada 4

zero: . These constitute the artificial constraints in the statics 
domain. 

0,0,0,0 ==== yxyx ff ττ

In the above example, it is clear that the axes involved in the natural constraints and the 
artificial constraints are orthogonal to each other in both kinematic and static domains. Moreover, 
the axes involved in the natural kinematic constraints and the artificial static constraints are the 
same, and the ones listed in the natural static constraints and the artificial kinematic constraints 
are the same. These relationships are rather obvious in the above example where the direction of 
each C-frame axis is aligned with the direction along which each control mode, position or force, 
is assigned. If such a C-frame exists, these orthogonality properties are simply the consequence of 
the following assumptions and rule:  

 
• Each C-frame axis must have only one control mode, either position or force, 
• The process is quasi-static and friction less, and  
• The robot motion must conform to geometric constraints. 

 
In general, the axes of a C-frame are not necessarily the same as the direction of a separate 
control mode. Nevertheless, the orthogonality properties hold in general. We prove this next. 

Let V6 be a six-dimensional vector space, and  be an admissible motion space, 
that is, the entire collection of admissible motions conforming to the geometric constraints 
involved in a given task. Let Vc be a constraint space that is the orthogonal complement to the 
admissible motion space: 

6VVa ⊂

 
⊥= ac VV           (9.1.1) 

 
Let  be a six-dimensional endpoint force acting on the end-effecter, and be an 
infinitesimal displacement of the end-effecter. The work done on the end-effecter is given by 

6V∈F 6V∈∆p

 
pF ∆=∆ TWork         (9.1.2) 

 
Decomposing each vector to the one in the admissible motion space and the one in the constraint 
space, 
 

ccaaca

ccaaca

VV
VV
∈∆∈∆∆+∆=∆

∈∈+=
ppppp

FFFFF
,;

,;
     (9.1.3) 

 
and substituting them to eq.(2) yield 
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pFpFpFpFppFF
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∆+∆+∆+∆=∆+∆+=∆ )()(
 (9.1.4) 

 
since by definition. For the infinitesimal displacement  to be a virtual 
displacement 

acca pFpF ∆⊥∆⊥ , p∆
pδ , its component in the constraint space must be zero: 0=∆ cp . Then, 

pp δ=∆ a  becomes a virtual displacement, and eq.(4) reduces to virtual work. Since the system 
is in a static equilibrium, the virtual work must vanish for all virtual displacements apδ . 
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aa
T

aWork ppF δδδ ∀== ,0       (9.1.5) 
 
This implies that any force and moment in the admissible motion space must be zero, i.e. the 
natural static constraints: 
 

aa V∈= F0         (9.1.6) 
 
 
Furthermore, the properties of artificial static constraints can be derived from eqs.(4) and (5). 
Since in eq.(4) , the static equilibrium condition holds, although  takes an 
arbitrary value. This implies that to meet a task goal we can assign arbitrary values to the force 
and moment in the constraint space, i.e. the artificial static constraints. 

0=∆ cp cc V∈F

 
cc Varbitrary ∈F:        (9.1.7) 

 
Converting infinitesimal displacements to velocities, , we can obtain the natural and 
artificial kinematic constraints: 

ca pp ,

 

cc

aa

V
Varbitrary

∈=
∈

p
p

0
,:

       (9.1.8) 

 
 Table 9.1.2 summarizes the above results. 
 

Table 9.1.2 Mason’s Principle of Hybrid Position/Force Control 
 

 Kinematic Static 
Natural Constraints 

cc V∈= p0  aa V∈= F0  
Artificial Constraints 

aa Varbitrary ∈p:  cc Varbitrary ∈F:  
 

 The reader will appreciate Mason’s Principle when considering the following exercise 
problem, in which the partition between admissible motion space and constraint space cannot be 
described by a simple division of C-frame axes. Rather the admissible motion space lies along an 
axis where a translational axis and a rotational axis are coupled. 
 
Exercise 9.2 (The same as PS) 
 
9.1.2 Architecture of Hybrid Position/Force Control System 
 
 Based on Mason’s Principle, a hybrid position/force control system can be constructed in 
such a way that the robot control system may not have a conflict with the natural constraints of 
the task process, while performing the task towards the task goal. Figure 9.1.5 shows the block 
diagram of a hybrid position/force control system. The upper half of the diagram is position 
control loops, where artificial kinematic constraints are provided as reference inputs to the system 
and are compared with the actual position of the end-effecter. The lower half of the diagram is 
force control loops, where artificial static constraints are provided as reference inputs to the 
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feedback loops and are compared with the actual force and moment at the end-effecter. Note that 
feedback signals are described in an appropriate C-frame attached to the end-effecter.  
 If the feedback signals are noise-less and the C-frame is perfectly aligned with the actual 
task process, the position signal of the feedback loop must lie in the admissible motion space, and 
the force being fed back must lie in the constraint space. However, the feedback signals are in 
general corrupted with sensor noise and the C-frame may be misaligned. Therefore, the position 
signal may contain some component in the constraint space, and some fraction of the force signal 
may be in the admissible motion space. These components are contradicting with the natural 
constraints, and therefore should not be fed back to the individual position and force controls. To 
filter out the contradicting components, the feedback errors are projected to their own subspaces, 
i.e. the positional error ep mapped to the admissible motion space Va and the force feedback error 
ef mapped to the constraint space Vc. In the block diagram these filters are shown by projection 
matrices, Pa and Pc : 
 

fcfpap ePeePe == ,       (9.1.9) 
 
When the C-frame axes are aligned with the directions of the individual position and force control 
loops, the projection matrices are diagonal, consisting of only 1 and 0 in the diagonal components. 
In the case of the peg-in-the-hole problem, they are: 
 

)100100(),011011( diagdiag ca == PP     (9.1.10) 
 

In case of Example 9.2 where the C-frame axes are not the directions of the individual position 
and force control loops, the projection matrices are not diagonal.  
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Figure 9.1.4 Block diagram of hybrid position/force control system 
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 These feedback errors, fp ee and , are in the C-frame, hence they must be converted to 
the joint space in order to generate control commands to the actuators. Assuming that the 
positional error vector is small and that the robot is not at a singular configuration, the position 
feedback error in joint coordinates is given by 
 

pq eJe 1−=         (9.1.11) 
 

where J is the Jacobian relating the end-effecter velocities in the C-frame to joint velocites. The 
force feedback error in the joint coordinates, on the other hand, is obtained based on the duality 
principle: 
 

f
T eJe =τ         (9.1.12) 

 
These two error signals in the joint coordinates are combined after going through dynamic 
compensation in the individual joint controls.  
 

 
9.2 Compliance Control 
 
9.2.1 Task strategy 
 Use of both position and force information is a unique feature in the control of robots 
physically interacting with the environment. In hybrid position/force control, separation was 
made explicitly between position and force control loops through projections of feedback signals 
onto admissible motion space and constraint space. An alternative to this space separation 
architecture is to control a relationship between position and force in the task space. Compliance 
Control is a basic control law relating the displacement of the end-effecter to the force and 
moment acting on it. Rather than totally separating the task space into subspaces of either position 
or force control, compliance control reacts to the endpoint force such that a given functional 
relationship, typically a linear map, is held between the force and the displacement. Namely, a 
functional relationship to generate is given by 
 

CFp =∆          (9.2.1) 
 
where C is an m x m Compliance Matrix, and Fpand∆  are endpoint displacement and force 
represented in an m-dimensional, task coordinate system. Note that the inverse to the compliance 
matrix is a stiffness matrix:  
 

1−= CK          (9.2.2) 
 

if the inverse exists. 
 The components of the compliance matrix, or the stiffness matrix, are design parameters 
to be determined so as to meet task objectives and constraints. Opening a door, for example, can 
be performed with the compiance illustrated in Figure 9.2.1. The trajectory of the doorknob is 
geometrically constrained to the circle of radius R centered at the door hinge. The robot hand 
motion must comply to the constrained doorknob trajectory, although the trajectory is not exactly 
known.  The robot must not break the doorknob, although the conceived trajectory is different 
from the actual trajectory. This task requirement can be met by assigining a small stiffness, i.e. a 
high compliance, to the radial direction perpendicular to the trajectory. As illustrated in the figure, 
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such a small spring constant generates only a small restoring force in response to the discrepancy 
between the actual doorknob trajectory and the reference trajectory of the robot hand. Along the 
direction tangent to the doorknob trajectory, on the other hand, a large stiffness, or a small 
compliance, is assigned. This is to force the doorknob to move along the trajectory despite 
friction and other resistive forces. The stiffness matrix is therefore given by 
 

1,1;
0

0
>><<⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= yx

y

x kk
k

k
K       (9.2.3) 

 
with reference to the task coordinate system O-xy. Using this stiffness with which the doorknow 
is held, the robot can open the door smoothly and dexterously, although the exact trajectory of the 
doorknob is not known. 
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Figure 9.2.1 Door opening with compliance control 
 
 
9.2.2 Compliance control synthesis 
  

Now that a desired compliance is given, let us consider the method of generating the 
desired compliance. There are multiple ways of synthesizing a compliance control system. The 
simplest method is to accommodate the proportional gains of joint feedback controls so that 
desired restoring forces are generated in proportion to discrepancies between the actual and 
reference joint angles. As shown in Figure 9.2.2, a feedback control error  is generated when a 
disturbance force or torque acts on the joint. At steady state a ststic balance is made, as an 
actuator torque 

ie

iτ  proportional to the control error  cancels out the disturbance torque. The 
proportionality constant is determined by the position feedback gain ki, when friction is neglected. 
Therefore a desired stiffness or compliance can be obtained by tuning the position feedback gain. 

ie

 
 Compliance synthesis is trivial for single joint control systems. For general n degree-of-
freedom robots, however, multiple feedback loops must be coordinated. We now consider how to 
generate a desired m x m compliance or stiffness matrix specified at the endpoint by tuning joint 
feedback gains. 
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Figure 9.2.2 Single joint position feedback control system 
 

 
Theorem Let J be the Jacobian relating endpoint velocity  to joint velocities 

, and  be joint torques associated with joint coordinates q. Let  be a 

m x 1 vector of the endpoint displacement measured from a nominal position

1xmR∈p
1xnR∈q 1xnR∈τ 1xmR∈∆p

p , and 1xmR∈F  be 
the endpoint force associated with the endpoint displacement p∆ . Let Kp be a desired endpoint 
stiffness matrix defined as: 
 

pKF ∆= p         (9.2.4) 
 
The necessary condition for joint feedback gain Kq to generate the endpoint stiffness Kp is given 
by 
 

JKJK p
T

q =         (9.2.5) 
 

assuming no friction at the joints and linkage mechanisms. 
 
Proof 
 Using the Jacobian and the duality principle as well as eq.(4), 
 

qJKJpKJFJτ ∆⋅=∆== p
T

p
TT      (9.2.6) 

 
Using eq.(5), the above relationship reduces to 
 

qKτ ∆= q         (9.2.7) 
 

This implies that Kq is the joint feedback gain matrix. 
 
Example 9.2.1 Consider a two-link, planar robot arm with absolute joint angles and joint torques, 
as shown in Figure 9.2.3. Obtain the joint feedback gain matrix producing the endpoint stiffness 
Kp : 
 

⎟⎟
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⎞
⎜⎜
⎝

⎛
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1

0
0
k

k
pK        (9.2.8) 
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Assuming that the link length is 1 for both links, the Jacobian is given by 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

21

21

cc
ss

J        (9.2.9) 

 
From eq.(5), 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

23

31

qq

qq
p

T
q kk
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JKJK      (9.2.10) 

where  
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       (9.2.11) 

 
Note that the joint feedback gain matrix Kq is symmetric and that the matrix Kq degenerates when 
the robot is at a singular configuration. If it is non-singular, then 
 

CFFKFJJKJJFJJKτJKqJp =====∆=∆ −−−− 1111 )( p
T

p
TT

qq  (9.2.12) 
 
Therefore, the obtained joint feedback gain provides the desired endpoint stiffness given by eq.(8), 
or the equivalent compliance.  
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Figure 9.2.3 Two link robot 
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