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Chapter 7
Dynamics

In this chapter, we analyze the dynamic behavior of robot mechanisms. The dynamic
behavior is described in terms of the time rate of change of the robot configuration in relation to
the joint torques exerted by the actuators. This relationship can be expressed by a set of
differential equations, called equations of motion, that govern the dynamic response of the robot
linkage to input joint torques. In the next chapter, we will design a control system on the basis of
these equations of motion.

Two methods can be used in order to obtain the equations of motion: the Newton-Euler
formulation, and the Lagrangian formulation. The Newton-Euler formulation is derived by the
direct interpretation of Newton's Second Law of Motion, which describes dynamic systems in
terms of force and momentum. The equations incorporate all the forces and moments acting on
the individual robot links, including the coupling forces and moments between the links. The
equations obtained from the Newton-Euler method include the constraint forces acting between
adjacent links. Thus, additional arithmetic operations are required to eliminate these terms and
obtain explicit relations between the joint torques and the resultant motion in terms of joint
displacements. In the Lagrangian formulation, on the other hand, the system's dynamic behavior
is described in terms of work and energy using generalized coordinates. This approach is the
extension of the indirect method discussed in the previous chapter to dynamics. Therefore, all the
workless forces and constraint forces are automatically eliminated in this method. The resultant
equations are generally compact and provide a closed-form expression in terms of joint torques
and joint displacements. Furthermore, the derivation is simpler and more systematic than in the
Newton-Euler method.

The robot’s equations of motion are basically a description of the relationship between
the input joint torques and the output motion, i.e. the motion of the robot linkage. As in
kinematics and in statics, we need to solve the inverse problem of finding the necessary input
torques to obtain a desired output motion. This inverse dynamics problem is discussed in the last
section of this chapter. Efficient algorithms have been developed that allow the dynamic
computations to be carried out on-line in real time.

7.1 Newton-Euler Formulation of Equations of Motion

7.1.1. Basic Dynamic Equations

In this section we derive the equations of motion for an individual link based on the direct
method, i.e. Newton-Euler Formulation. The motion of a rigid body can be decomposed into the
translational motion with respect to an arbitrary point fixed to the rigid body, and the rotational
motion of the rigid body about that point. The dynamic equations of a rigid body can also be
represented by two equations: one describes the translational motion of the centroid (or center of
mass), while the other describes the rotational motion about the centroid. The former is Newton's
equation of motion for a mass particle, and the latter is called Euler's equation of motion.

We begin by considering the free body diagram of an individual link. Figure 7.1.1 shows
all the forces and moments acting on link i. The figure is the same as Figure 6.1.1, which
describes the static balance of forces, except for the inertial force and moment that arise from the

dynamic motion of the link. Let v be the linear velocity of the centroid of link i with reference
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to the base coordinate frame O-xyz, which is an inertial reference frame. The inertial force is then
given by — m; v, , where m; is the mass of the link and v is the time derivative of v ;. Based

on D’Alembert’s principle, the equation of motion is then obtained by adding the inertial force to
the static balance of forces in eq.(6.1.1) so that

fi—f,+mg-mv; =0, i=1--n (7.1.1)

ii+

where, as in Chapter 6, f,_,; and —f; , are the coupling forces applied to link i by links i-1 and

i,i+1

i+1, respectively, and g is the acceleration of gravity.

Joint i Joint i+1

Figure 7.1.1 Free body diagram of link i in motion

Rotational motions are described by Euler's equations. In the same way as for
translational motions, adding “inertial torques” to the static balance of moments yields the
dynamic equations. We begin by describing the mass properties of a single rigid body with
respect to rotations about the centroid. The mass properties are represented by an inertia tensor,
or an inertia matrix, which is a 3 x 3 symmetric matrix defined by

foo (=¥ #2=2)Ypadv —[ (x=x)y-y)pdv [ (z-2)(x-x)pdV
I=| [ =x)y-yedv [ {z-2)"+(x-x)YpdV  ~[ (y-y)(z-z)pdV
[, @ 2x=x)pdv [ (y-yz-z)pdv [ Lx-x) (Y- v dpdV
(7.1.2)

where p is the mass density, X, Y., Z, are the coordinates of the centroid of the rigid body, and

each integral is taken over the entire volume V of the rigid body. Note that the inertia matrix
varies with the orientation of the rigid body. Although the inherent mass property of the rigid
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body does not change when viewed from a frame fixed to the body, its matrix representation
when viewed from a fixed frame, i.e. inertial reference frame, changes as the body rotates.
The inertial torque acting on link i is given by the time rate of change of the angular

momentum of the link at that instant. Let ®; be the angular velocity vector and I; be the

centroidal inertia tensor of link i, then the angular momentum is given by I,®, . Since the inertia
tensor varies as the orientation of the link changes, the time derivative of the angular momentum
includes not only the angular acceleration term I, @, , but also a term resulting from changes in the
inertia tensor viewed from a fixed frame. This latter term is known as the gyroscopic torque and
is given by @; ><(Ii mi) . Adding these terms to the original balance of moments (4-2) yields

Ny = Nip =y +rg) < f + (i) < (£ ) — Lo —o;x(je;) =0, i=1--n

(7.1.3)

i+l

using the notations of Figure 7.1.1. Equations (2) and (3) govern the dynamic behavior of an
individual link. The complete set of equations for the whole robot is obtained by evaluating both
equations for all the links, i=1, - n.

7.1.2. Closed-Form Dynamic Equations

The Newton-Euler equations we have derived are not in an appropriate form for use in dynamic
analysis and control design. They do not explicitly describe the input-output relationship, unlike
the relationships we obtained in the kinematic and static analyses. In this section, we modify the
Newton-Euler equations so that explicit input-output relations can be obtained. The Newton-Euler
equations involve coupling forces and moments f,_, ; and N,_, ;. As shown in egs.(6.2.1) and

(6.2.2), the joint torque 7, which is the input to the robot linkage, is included in the coupling force
or moment. However, 7 is not explicitly involved in the Newton-Euler equations. Furthermore,
the coupling force and moment also include workless constraint forces, which act internally so
that individual link motions conform to the geometric constraints imposed by the mechanical
structure. To derive explicit input-output dynamic relations, we need to separate the input joint
torques from the constraint forces and moments. The Newton-Euler equations are described in
terms of centroid velocities and accelerations of individual arm links. Individual link motions,
however, are not independent, but are coupled through the linkage. They must satisfy certain
kinematic relationships to conform to the geometric constraints. Thus, individual centroid
position variables are not appropriate for output variables since they are not independent.

The appropriate form of the dynamic equations therefore consists of equations described
in terms of all independent position variables and input forces, i.e., joint torques, that are
explicitly involved in the dynamic equations. Dynamic equations in such an explicit input- output
form are referred to as closed-form dynamic equations. As discussed in the previous chapter, joint
displacements q are a complete and independent set of generalized coordinates that locate the
whole robot mechanism, and joint torques t are a set of independent inputs that are separated
from constraint forces and moments. Hence, dynamic equations in terms of joint displacements q
and joint torques t are closed-form dynamic equations.

Example 7.1
Figure 7.1.1 shows the two dof planar manipulator that we discussed in the previous
chapter. Let us obtain the Newton-Euler equations of motion for the two individual links, and

then derive closed-form dynamic equations in terms of joint displacements 6, andé, , and joint
torques t; and 1. Since the link mechanism is planar, we represent the velocity of the centroid of
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each link by a 2-dimensional vector v; and the angular velocity by a scalar velocity @ . We
assume that the centroid of link i is located on the center line passing through adjacent joints at a

distance ¢ from joint i, as shown in the figure. The axis of rotation does not vary for the planar
linkage. The inertia tensor in this case is reduced to a scalar moment of inertia denoted by I;.

From egs. (1) and (3), the Newton-Euler equations for link 1 are given by

fo,—f,+mg-myv, =0,
Nog =Ny, 41 xf, —rp o xfo, — 1o, =0 (7.1.4)

Note that all vectors are 2 x 1, so that moment N ;_;;and the other vector products are scalar
quantities. Similarly, for link 2,

£, +mg—m,v,, =0,
Ny, — Ty xf, — 1y, =0 (7.1.5)

v
>

Figure 7.1.2 Mass properties of two dof planar robot
To obtain closed-form dynamic equations, we first eliminate the constraint forces and separate

them from the joint torques, so as to explicitly involve the joint torques in the dynamic equations.
For the planar manipulator, the joint torques z; and z; are equal to the coupling moments:
Niy=7, 1=12 (7.1.6)

Substituting eq.(6) into eq.(5) and eliminating f; , we obtain
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Ty =Ty XMy Vep +1p X Mg — 1,0, =0 (7.1.7)
Similarly, eliminating f,; yields,

Ty =Ty =Ty XMV =T XMV, +1y xMg+r, xmg—lLao =0 (7.1.8)

Next, we rewrite v, @, and r; ., using joint displacements &, and &, , which are independent

ci? ii+l

variables. Note that @ is the angular velocity relative to the base coordinate frame, while 6, is
measured relative to link 1. Then, we have

w,=6, w,=06,+6, (7.1.9)
The linear velocities can be written as
— 0 ,6,sin6,
V= :
¢ ,6,c0s0,
~ [—{flsin 6, + 1 ,sin(6, +6,)}6, — (., sin(6, +92)}9'2]

v, = . : (7.1.10)
{¢,cosé + 1 ,cos(0,+6,)}0, +(,cos(6, +6,)}0,

Substituting egs. (9) and (10) along with their time derivatives into egs. (7) and (8), we obtain the
closed-form dynamic equations in terms of 6, andé, :

7, = H,0,+H,0, -h6? —2h6, + G, (7.1.11-a)
z,=H,,0,+H,6 +h6? +G, (7.1.11-b)
where
Hy, =m2 + 1 +my (03 + 02, +20,0 ,c086,)+1, (7.1.12-a)
H,, =m, %, +1, (7.1.12-b)
Hy, =m,(¢2, + (.0, c086,)+]1, (7.1.12-c)
h=m,(,/ ,sing, (7.1.12-d)
G, =m/_gcosé +m,g{l.,cos(b,+86,)+(,cosb} (7.1.12-e)
G, =m, g/ ,cos(6,+6,) (7.1.12f)
The scalar g represents the acceleration of gravity along the negative y-axis. |:|

More generally, the closed-form dynamic equations of an n-degree-of-freedom robot can
be given in the form

7, =Y Hy6,+> > 6, +G, i=1--n (7.1.13)
]

j+ j=1 k=1
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where coefficients Hj; , hiy, and G; are functions of joint displacements ¢, q,,--, ¢,. When
external forces act on the robot system, the left-hand side must be modified accordingly.

7.1.3. Physical Interpretation of the Dynamic Equations

In this section, we interpret the physical meaning of each term involved in the closed-
form dynamic equations for the two-dof planar robot.

The last term in each of egs. (11-a, b), G;, accounts for the effect of gravity. Indeed, the
terms G; and G, given by (12-e, f), represent the moments created by the masses m; and m, about
their individual joint axes. The moments are dependent upon the arm configuration. When the
arm is fully extended along the x-axis, the gravity moments become maximums.

Next, we investigate the first terms in the dynamic equations. When the second joint is
immobilized, i.e. 8, =0and 8, =0, the first dynamic equation reduces to 7, = H,,6, , where the
gravity term is neglected. From this expression it follows that the coefficient Hy; accounts for the
moment of inertia seen by the first joint when the second joint is immobilized. The coefficient Hy;
given by eq. (12-a) is interpreted as the total moment of inertia of both links reflected to the first
joint axis. The first two terms, mlﬁclz +1,, in eq. (12-a), represent the moment of inertia of link 1
with respect to joint 1, while the other terms are the contribution from link 2. The inertia of the
second link depends upon the distance L between the centroid of link 2 and the first joint axis, as
illustrated in Figure 7.1.3. The distance L is a function of the joint angle €, and is given by

L2=¢2+0,,"+20,0,C086, (7.1.14)

Using the parallel axes theorem of moment of inertia (Goldstein, 1981), the inertia of link 2 with
respect to joint 1 is moL?+1,, which is consistent with the last two terms in eq. (12-a). Note that
the inertia varies with the arm configuration. The inertia is maximum when the arm is fully

extended (6, = 0), and minimum when the arm is completely contracted (6, = ).

Figure 7.1.3 Varying inertia depending on the arm configuration
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Let us now examine the second terms on the right hand side of eq. (11). Consider the
instant when 6, = 8, =0 and g, = 0, then the first equation reduces to 7, = H,,6,, where the
gravity term is again neglected. From this expression it follows that the second term accounts for
the effect of the second link motion upon the first joint. When the second link is accelerated, the
reaction force and torque induced by the second link act upon the first link. This is clear in the
original Newton-Euler equations (4), where the coupling force -f;, and moment -N; , from link 2
are involved in the dynamic equation for link 1. The coupling force and moment cause a torque
7, about the first joint axis given by

7 =N, -1y, %1,

int —

=—l,0, — x5, xM,V, (7.1.15)
=—{l,+m, (¢, +1,(,,c036,)}6,

where Ny, and f;, are evaluated using eq. (5) for 6, = 8, =0 and &, = 0.. This agrees with the
second term in eq. (11-a). Thus, the second term accounts for the interaction between the two
joints.

The third terms in eq. (11) are propgrtional to the square of the joint velocities. We
consider the instant when @, =0 and &, = 6, =0, as shown in Figure 7.1.4-(a). In this case, a
centrifugal force acts upon the second link. Let f..; be the centrifugal force. Its magnitude is
given by

I

A2
went| =M, L6, (7.1.16)
where L is the distance between the centroid C, and the first joint O. The centrifugal force acts in
the direction of position vector r ., . This centrifugal force causes a moment tcen about the
second joint. Using eq. (16), the moment Tcer IS computed as

z —m, (0,6, (7.1.17)

cent ent =

=1, xf
This agrees with the third term hélz in eg. (11-b). Thus we conclude that the third term is caused
by the centrifugal effect on the second joint due to the motion of the first joint. Similarly, rotating
the second joint at a constant velocity causes a torque of — h4922 due to the centrifugal effect upon
the first joint.

fCor

Figure 7.1.4 Centrifugal (a) and Coriolis (b) effects
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Finally we discuss the fourth term of eq. (11-a), which is proportional to the product of
the joint velocities. Consider the instant when the two joints rotate at velocities &, and &, at the

same time. Let O,-XpYh be the coordinate frame attached to the tip of link 1, as shown in Figure
7.1.4-(b). Note that the frame Op-XpY)p is parallel to the base coordinate frame at the instant

shown. However, the frame rotates at the angular velocity 491 together with link 1. The mass
centroid of link 2 moves at a velocity of ﬁczéz relative to link 1, i.e. the moving coordinate frame

Op-XpYp. When a mass particle m moves at a velocity of v, relative to a moving coordinate frame
rotating at an angular velocity @, the mass particle has the so-called Coriolis force given by
—2m(mxv,) . Let fcor be the force acting on link 2 due to the Coriolis effect. The Coriolis force

is given by

2m, ¢, 0, 6, cos(6, + 6
S A (6+6,) (7.1.18)
2m, /¢, 6,6,sin(6,+6,)
This Coriolis force causes a moment 7 ¢ or about the first joint, which is given by
Teor =Yoo Xfoor =2M, £, L, 91 ‘92 sind, (7.1.19)

The right-hand side of the above equation agrees with the fourth term in eq. (11-a). Since the
Coriolis force given by eq. (18) acts in parallel with link 2, the force does not create a moment
about the second joint in this particular case.

Thus, the dynamic equations of a robot arm are characterized by a configuration-
dependent inertia, gravity torques, and interaction torques caused by the accelerations of the other
joints and the existence of centrifugal and Coriolis effects.

7.2. Lagrangian Formulation of Robot Dynamics

7.2.1. Lagrangian Dynamics

In the Newton-Euler formulation, the equations of motion are derived from Newton's
Second Law, which relates force and momentum, as well as torque and angular momentum. The
resulting equations involve constraint forces, which must be eliminated in order to obtain closed-
form dynamic equations. In the Newton-Euler formulation, the equations are not expressed in
terms of independent variables, and do not include input joint torques explicitly. Arithmetic
operations are needed to derive the closed-form dynamic equations. This represents a complex
procedure that requires physical intuition, as discussed in the previous section.

An alternative to the Newton-Euler formulation of manipulator dynamics is the
Lagrangian formulation, which describes the behavior of a dynamic system in terms of work and
energy stored in the system rather than of forces and moments of the individual members
involved. The constraint forces involved in the system are automatically eliminated in the
formulation of Lagrangian dynamic equations. The closed-form dynamic equations can be
derived systematically in any coordinate system.

Let g,,---, 0, be generalized coordinates that completely locate a dynamic system. Let T

and U be the total kinetic energy and potential energy stored in the dynamic system. We define
the Lagrangian L by
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L(qi'qi) :T(qi'qi)_u(qi) (7.2.1)
Note that the potential energy is a function of generalized coordinates g; and that the kinetic
energy is that of generalized velocities ¢, as well as generalized coordinates g;. Using the

Lagrangian, equations of motion of the dynamic system are given by

d oL oL ]
SRk _% o i=l--n 7.2.2
dt og, oq, ? (722

where Q; is the generalized force corresponding to the generalized coordinate gi. Considering the
virtual work done by non-conservative forces can identify the generalized forces acting on the
system.

7.2.2 Planar Robot Dynamics

Before discussing general robot dynamics in three-dimensional space, we consider the 2
dof planar robot, for which we have derived the equations of motion based on Newton-Euler
Formulation. Figure 7.2.1 shows the same robot mechanism with a few new variables needed for
the Lagrangian Formulation.

yA

v
>

Figure 7.2.1 Two dof robot

The total kinetic energy stored in the two links moving at linear velocity v and angular
velocity o, at the centroids, as shown in the figure, is given by

T= 22:(% m; |Vci|2 +% L o) (7.2.3)
=

where |Vci| represents the magnitude of the velocity vector. Note that the linear velocities and the
angular velocities are not independent variables, but are functions of joint angles and joint
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angular velocities, i.e. the generalized coordinates and the generalized velocities that locate the
dynamic state of the system uniquely. We need to rewrite the above kinetic energy so that it is

with respect to €, and 9, . The angular velocities are given by

0, =6, w,=6,+6, (7.2.4)
The linear velocity of the first link is simply

vl =167 (7.2.5)

However, the centroidal linear velocity of the second link v, needs more computation. Treating
the centroid C, as an endpoint and applying the formula for computing the endpoint velocity yield

the centroidal velocity. Let J_, be the 2x2 Jacobian matrix relating the centroidal velocity vector
to joint velocities. Then,

Voo =Pt =479, 900 (7.2.6)

where q = (91 92 )T . Substituting eqgs.(4~6) to eq.(3) yields

1 . .. 1 .. 1¢- -.w(H,, H.Y@a
T==H,0*+H,00,+-H,60==(6, 0 R (7.2.7)
2 1171 12%1%2 2 2272 2( 1 2) (le H22 02
where coefficients Hj; are the same as the ones in eq.(7.1.12).
Hy, =m2 + 1 +my (02 + 02, +20,0 ,c080,)+ 1, =H,(6,) (7.1.12-a)
H,, =m, %, +1, (7.1.12-b)
H, =m, (/3 +/,0.,c086,)+1,=H,(6,) (7.1.12-c)
Note that coefficients Hy; and Hy, are functions of 6,.
The potential energy stored in the two links is given by
U=mg/l,sing +m,g{l,sing, + 7 ,sin(6, +6,)} (7.2.8)

Now we are ready to obtain Lagrange’s equations of motion by differentiating the above
kinetic energy and potential energy. For the first joint,

oa_ U —[m,?¢., gcosé, +m, g{/.,cos(&, +6,)+ ¢, cosb}] =-G, (7.2.9)
od  0g
a =Hyu6 +H,0,
d 18L oH oH (72.10)
Ea_ = Hllél + leéz +—119291 +— 922
o 00, 00,
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Substituting the above two equations into eq.(2) yields the same result as eq.(7.1.11-a). The
equation of motion for the second joint can be obtained in the same manner, which is identical to
eq.(7.1.11-b). Thus, the same equations of motion have been obtained based on Lagrangian
Formulation. Note that the Lagrangian Formulation is simpler and more systematic than the
Newton-Euler Formulation. To formulate Kinetic energy, velocities must be obtained, but
accelerations are not needed. Remember that the acceleration computation was complex in the
Newton-Euler Formulation, as discussed in the previous section. This acceleration computation is
automatically dealt with in the computation of Lagrange’s equations of motion. The difference
between the two methods is more significant when the degrees of freedom increase, since many
workless constraint forces and moments are present and the acceleration computation becomes
more complex in Newton-Euler Formulation.

7.2.3 Inertia Matrix

In this section we will extend Lagrange’s equations of motion obtained for the two d.o.f.
planar robot to the ones for a general n d.o.f. robot. Central to Lagrangian formulation is the
derivation of the total kinetic energy stored in all of the rigid bodies involved in a robotic system.
Examining kinetic energy will provide useful physical insights of robot dynamic. Such physical
insights based on Lagrangian formulation will supplement the ones we have obtained based on
Newton-Euler formulation.

As seen in eq.(3) for the planar robot, the kinetic energy stored in an individual arm link
consists of two terms; one is kinetic energy attributed to the translational motion of mass m; and
the other is due to rotation about the centroid. For a general three-dimensional rigid body, this can
be written as

T :%miVCiTVci +%miTIimi1 i=1--n (7.2.11)

where o, and I; are, respectively, the 3x1 angular velocity vector and the 3x3 inertia matrix of

the i-th link viewed from the base coordinate frame, i.e. inertial reference. The total kinetic
energy stored in the whole robot linkage is then given by

T=>T, (7.2.12)

since energy is additive.

The expression for the Kinetic energy is written in terms of the velocity and angular
velocity of each link member, which are not independent variables, as mentioned in the previous
section. Let us now rewrite the above equations in terms of an independent and complete set of
generalized coordinates, namely joint coordinates q = [qs, .. ,0.]". For the planar robot example,
we used the Jacobian matrix relating the centroid velocity to joint velocities for rewriting the
expression. We can use the same method for rewriting the centroidal velocity and angular
velocity for three-dimensional multi-body systems.

=Jka
Yo =i (7.2.13)
o, =J7q
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where J& and JA are, respectively, the 3 x n Jacobian matrices relating the centroid linear
velocity and the angular velocity of the i-th link to joint velocities. Note that the linear and
angular velocities of the i-th link are dependent only on the first i joint velocities, and hence the
last n-i columns of these Jacobian matrices are zero vectors. Substituting eg.(13) into egs.(11) and
(12) yields

T :%Z(miqTJﬁTqumTJi’“I Aq) = —q "Hg (7.2.14)
i=1
where H is a n x n matrix given by

H=> (mJ" I +3 195 (7.2.15)
i=1

The matrix H incorporates all the mass properties of the whole robot mechanism, as reflected to
the joint axes, and is referred to as the Multi-Body Inertia Matrix. Note the difference between the
multi-body inertia matrix and the 3 x 3 inertia matrices of the individual links. The former is an
aggregate inertia matrix including the latter as components. The multi-body inertia matrix,
however, has properties similar to those of individual inertia matrices. As shown in eq. (15), the
multi-body inertia matrix is a symmetric matrix, as is the individual inertia matrix defined by eq.
(7.1.2). The quadratic form associated with the multi-body inertia matrix represents kinetic
energy, so does the individual inertia matrix. Kinetic energy is always strictly positive unless the
system is at rest. The multi-body inertia matrix of eq. (15) is positive definite, as are the
individual inertia matrices. Note, however, that the multi-body inertia matrix involves Jacobian
matrices, which vary with linkage configuration. Therefore the multi-body inertia matrix is
configuration-dependent and represents the instantaneous composite mass properties of the whole
linkage at the current linkage configuration. To manifest the configuration-dependent nature of
the multi-body inertia matrix, we write it as H(q), a function of joint coordinates q.

Using the components of the multi-body inertia matrix H={H;;}, we can write the total
kinetic energy in scalar quadratic form:

:_zz H; 0.0, (7.2.16)

i=l j=1

Most of the terms involved in Lagrange’s equations of motion can be obtained directly by
differentiating the above kinetic energy. From the first term in eq.(2),

dtaq, dt(z 19 = ZH”q +Z j (7.2.17)

The first term of the last expression, Zn: H,d,; comprises the diagonal term H;¢j; as well as off-
j=1
diagonal terms zn: H,d,; representing the dynamic interactions among the multiple joints due to
i#]
accelerations, as discussed in the previous section. It is important to note that a pair of joints, i
and j, have the same coefficient of the dynamic interaction, Hi=H;i , since the multi-body inertia
matrix H is symmetric. In vector-matrix form these terms can be written collectively as
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d,
H11 Hln .
H{ = > ey g, (7.2.18)
sl om0 -
Hnl e |_|nn :
Ay

It is clear that the interactive inertial torque H;,q; caused by the j-th joint acceleration upon the i-
th joint has the same coefficient as that of H ;d; caused by joint i upon joint j. This property is
called Maxwell’s Reciprocity Relation.

The second term of eq.(17) is non-zero in general, since the multi-body inertia matrix is
configuration-dependent, being a function of joint coordinates. Applying the chain rule,

dH, <0H, dg, & OH,

ij A
_ _ q (7.2.19)
dt ; oq, dt ; oq,

The second term in eq.(2), Lagrange’s equation of motion, also yields the partial derivatives of
Hi;. From eq.(16),

e YMLRTNEE )

7.2.20
i o k= = h ( )

q;9

Substituting eq.(19) into the second term of eq.(17) and combining the resultant term with
eq.(20), let us write these nonlinear terms as

h = chukq Gy (7.2.21)

j=1 k=1
where coefficients Cjy is given by

%_lﬂ (7.2.22)
aq, 2 aq

ik —

This coefficient Cyy is called Christoffel’s Three-Index Symbol. Note that eq.(21) is nonlinear,
having products of joint velocities. Eg.(21) can be divided into the terms proportional to square
joint velocities, i.e. j=k, and the ones for j # k : the former represents centrifugal torques and the

latter Coriolis torques.

h = Z;Cm.qu + kzc”kqiqk = (Centrifugal) + (Coriolis) (7.2.23)
= #]
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These centrifugal and Coriolis terms are present only when the multi-body inertia matrix is
configuration dependent. In other words, the centrifugal and Coriolis torques are interpreted as
nonlinear effects due to the configuration-dependent nature of the multi-body inertia matrix in
Lagrangian formulation.

7.2.4 Generalized Forces

Forces acting on a system of rigid bodies can be represented as conservative forces and
non-conservative forces. The former is given by partial derivatives of potential energy U in
Lagrange’s equations of motion. If gravity is the only conservative force, the total potential
energy stored in n links is given by

—Z mg'r, . (7.2.24)

where r, ; is the position vector of the centroid C; that is dependent on joint coordinates.

Substituting this potential energy into Lagrange’s equations of motion yields the following
gravity torque seen by the i-th joint:

G _:_Zn:

aQ| j=1

= —Zm g'J;, (7.2.25)

where J?’i is the i-th column vector of the 3 x 1 Jacobian matrix relating the linear centroid

velocity of the j-th link to joint velocities.

Non-conservative forces acting on the robot mechanism are represented by generalized
forces Qjin Lagrangian formulation. Let sWork be virtual work done by all the non-conservative
forces acting on the system. Generalized forces Q; associated with generalized coordinates g, e.g.
joint coordinates, are defined by

oWork = Zn:Qiﬁqi (7.2.26)

If the virtual work is given by the inner product of joint torques and virtual joint displacements,
7,00, + -+ 7,04, , the joint torque itself is the generalized force corresponding to the joint

coordinate. However, generalized forces are often different from joint torques. Care must be
taken for finding correct generalized forces. Let us work out the following example.

Example 7.2
Consider the same 2 d.o.f. planar robot as Example 7.1. Instead of using joint angles &,
and 6, as generalized coordinates, let us use the absolute angles, @ and ¢, , measured from the

positive x-axis. See the figure below. Changing generalized coordinates entails changes to
generalized forces. Let us find the generalized forces for the new coordinates.
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Figure 7.2.2 Absolute joint angles @ and ¢, and disjointed links

As shown in the figure, joint torque 7, acts on the second link, whose virtual
displacement is og, , while joint torque 7, and the reaction torque —z,act on the first link for
virtual displacement &g, . Therefore the virtual work is

MWork = (7, —7,) 08, + 7,00, (7.2.27)

Comparing this equation with eq.(26) where generalized coordinates are ¢ = q,, ¢, =Q,, we can
conclude that the generalized forces are:

Q=r-7, Q,=1, (7.2.28)
The two sets of generalized coordinates &, and 6, vs. ¢ and ¢, are related as

$=6, ¢=6+06, (7.2.29)
Substituting eq.(29) into eq.(27) yields

oWork = (7, —7,)00, +7,0(6, + 6,) = 1,06, + 7,00, (7.2.30)

This confirms that the generalized forces associated with the original generalized coordinates, i.e.
joint coordinates, are z,and 7, .

Non-conservative forces acting on a robot mechanism include not only these joint torques
but also any other external force Fe . If an external force acts at the endpoint, the generalized
forces Q=(Qy,..., Qn)T associated with generalized coordinates q are, in vector form, given by

Sork =t'5q+F, p=(t+JI'F,) 5 =Q'&q
Q=1+J'F, (7.2.31)
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When the external force acts at position r, the above Jacobian must be replaced by

_dr
r dq
Note that, since generalized coordinates q can uniquely locate the system, the position vector r
must be written as a function of q alone.

J (7.2.32)
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