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Chapter 6 
Statics 

 
 Robots physically interact with the environment through mechanical contacts. Mating 
work pieces in a robotic assembly line, manipulating an object with a multi-fingered hand, and 
negotiating a rough terrain through leg locomotion are just a few examples of mechanical 
interactions. All of these tasks entail control of the contacts and interference between the robot 
and the environment. Force and moment acting between the robot end-effecter and the 
environment must be accommodated for in order to control the interactions. In this chapter we 
will analyze the force and moment that act on the robot when it is at rest. 
 

A robot generates a force and a moment at its end-effecter by controlling individual 
actuators. To generate a desired force and moment, the torques of the multiple actuators must be 
coordinated. As seen in the previous chapter, the sensitivities of the individual actuators upon the 
end-effecter motion, i.e. the Jacobian matrix, are essential in relating the actuator (joint) torques 
to the force and moment at the end-effecter. We will obtain a fundamental theorem for force and 
moment acting on a multi degree-of-freedom robot, which we will find is analogous to the 
differential kinematics discussed previously.  
 
6.1 Free Body Diagram 

We begin by considering the free body diagram of an individual link involved in an open 
kinematic chain. Figure 6.1.1 shows the forces and moments acting on link i, which is connected 
to link i-1 and link i+1 by joints i and i+1, respectively. Let Oi be a point fixed to link i located 
on the joint axis i+1 and Oi-1 be a point fixed to link i-1 on the joint axis i. Through the 
connections with the adjacent links, link i receives forces and moments from both sides of the 
link. Let fi-1,i be a three-dimensional vector representing the linear force acting from link i-1 to 
link i. Likewise let fi,i+1 be the force from link i to link i+1. The force applied to link i from link 
i+1 is then given by –fi,i+1. The gravity force acting at the mass centroid Ci is denoted mig, where 
mi is the mass of link i and g is the 3x1 vector representing the acceleration of gravity. The 
balance of linear forces is then given by 

 

nimiiiii ,,1,1,,1 ==+− +− 0gff       (6.1.1) 

 

Note that all the vectors are defined with respect to the base coordinate system O-xyz. 

Next we derive the balance of moments. The moment applied to link i by link i-1 is 
denoted Ni-1,i, and therefore the moment applied to link i by link i+1 is –Ni,i+1. Furthermore, the 
linear forces fi-1,i and –fi,i+1 also cause moments about the centroid Ci. The balance of moments 
with respect to the centroid Ci is thus given by  

 

niiiCiiiiCiiiiiiii ,,1,)()()( 1,,,1,,11,,1 ==−×−+×+−− +−−+− 0frfrrNN   (6.1.2) 

 

where ri-1,i is the 3x1 position vector from point Oi-1  to point Oi with reference to the base 
coordinate frame, and ri,Ci represents the position vector from point Oi to the centroid Ci.  
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Figure 6.1.1 Free body diagram of the i-th link 

The force ii ,1−f  and moment ii ,1−  are called the coupling force and moment between 
the adjacent links i and i-1. For i=1, the coupling force and moment are 1,0  and 1,0 . These are 
interpreted as the reaction force and moment applied to the base link to which the arm mechanism 
is fixed. See Figure 6.1.2-(a). When i = n, on the other hand, the above coupling force and 
moment become 1, +nn  and 1, +nn . As the end-effecter, i.e. link n, contacts the environment, the 
reaction force acts on the end-effecter. See Figure 6.1.2-(b). For convenience, we regard the 
environment as an additional link, numbered n+1, and represent the reaction force and moment 
by  -  and  - , respectively. 
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Figure 6.1.2 Force and moment that the base link exerts on link 1 (a), and the ones that the 
environment exerts on the end-effecter, the final link (b) 
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 The above equations can be derived for all the link members except for the base link, i.e. 
i=1,2, …, n. This allows us to form 2n simultaneous equations of 3x1 vectors. The number of 
coupling forces and moments involved is 2(n+1). Therefore two of the coupling forces and 
moments must be specified; otherwise the equations cannot be solved. The final coupling force 
and moment, 1, +nnf  and 1, +nn , are the force and moment that the end-effecter applies to the 
environment. It is this pair of force and moment that the robot needs to accommodate in order to 
perform a given task. Thus, we specify this pair of coupling force and moment, and solve the 
simultaneous equations. For convenience we combine the force  and the moment , 
to define the following six-dimensional vector: 

N

1, +nnf 1, +nnN

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+

+

1,

1,

nn

nn

N
f

F         (6.1.3) 

     We call the vector F the endpoint force and moment vector, or the endpoint force for 
short. 

 

6.2 Energy Method and Equivalent Joint Torques 

 In this section we will obtain the functional relationship between the joint torques and the 
endpoint force, which will be needed for accommodating interactions between the end-effecter 
and the environment. Such a functional relationship may be obtained by solving the simultaneous 
equations derived from the free body diagram. However, we will use a different methodology, 
which will give an explicit formula relating the joint torques to the endpoint force without 
solving the simultaneous equations. The methodology we will use is the energy method, 
sometimes referred to as the indirect method. Since the simultaneous equations based on the 
balance of forces and moments are complex and difficult to solve, we will find that the energy 
method is the ideal choice when dealing with complex robotic systems.   

 In the energy method, we describe a system with respect to energy and work. Therefore, 
terms associated with forces and moments that do not produce, store, or dissipate energy are 
eliminated in its basic formula. In the free body diagram shown in Figure 6.1.1, many 
components of the forces and moments are so called “constraint forces and moments” merely 
joining adjacent links together. Therefore, constraint forces and moments do not participate in 
energy formulation. This significantly reduces the number of terms and, more importantly, will 
provide an explicit formula relating the joint torques to the endpoint force. 

 To apply the energy method, two preliminary formulations must be performed. One is to 
separate the net force or moment generating energy from the constraint forces and moments 
irrelevant to energy. Second, we need to find independent displacement variables that are 
geometrically admissible satisfying kinematic relations among the links.  

 Figure 6.2.1 shows the actuator torques and the coupling forces and moments acting at 
adjacent joints. The coupling force ii ,1−f  and moment ii ,1−N  are the resultant force and moment 
acting on the individual joint, comprising the constraint force and moment as well as the torque 
generated by the actuator. Let bi-1 be the 3x1 unit vector pointing in the direction of joint axis i, 
as shown in the figure. If the i-th joint is a revolute joint, the actuator generates joint torque iτ  
about the joint axis. Therefore, the joint torque generated by the actuator is one component of the 
coupling moment along the direction of the joint axis: ii ,1−N

ii
T

ii ,11 −− ⋅= Nbτ         (6.2.1) 
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For a prismatic joint, such as the (i+1)-st joint illustrated in Figure 6.2.1, the actuator generates a 
linear force in the direction of the joint axis. Therefore, it is the component of the linear coupling 
force  projected onto the joint axis. ii ,1−f

ii
T

ii ,11 −− ⋅= fbτ         (6.2.2) 

Note that, although we use the same notation as that of a revolute joint, the scalar quantity iτ  has 
the unit of a linear force for a prismatic joint. To unify the notation we use iτ  for both types of 
joints, and call it a joint torque regardless the type of joint.  
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Figure 6.2.1 Joint torques as components of coupling force and moment 

 We combine all the joint torques from joint 1 through joint n to define the nx1 joint 
torque vector: 

( T
nτττ 21=τ )         (6.2.3) 

The joint torque vector collectively represents all the actuators’ torque inputs to the linkage 
system. Note that all the other components of the coupling force and moment are borne by the 
mechanical structure of the joint. Therefore, the constraint forces and moments irrelevant to 
energy formula have been separated from the net energy inputs to the linkage system.  

 In the free body diagram, the individual links are disjointed, leaving constraint forces and 
moments at both sides of the link. The freed links are allowed to move in any direction. In the 
energy formulation, we describe the link motion using independent variables alone. Remember 
that in a serial link open kinematic chain joint coordinates ( )T= n1q are a complete and 
independent set of generalized coordinates that uniquely locate the linkage system with 
independent variables. Therefore, these variables conform to the geometric and kinematic 
constraints. We use these joint coordinates in the energy-based formulation. 

qq
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The explicit relationship between the n joint torques and the endpoint force F is given by 
the following theorem: 

Theorem 6.1 

Consider an n degree-of-freedom, serial link robot having no friction at the joints. The joint 
torques  that are required for bearing an arbitrary endpoint force  are given by  1×n 16x

Tδδδ =q
T

)τττ=τ

ℜ∈τ ℜ∈F
 

FJτ ⋅= T          (6.2.4) 
 

where J is the 6 x n Jacobian matrix relating infinitesimal joint displacements dq to infinitesimal 
end-effecter displacements dp: 

qJp dd ⋅=          (6.2.5) 

 

 Note that the joint torques in the above expression do not account for gravity and friction. 
They are the net torques that balances the endpoint force and moment. We call  of eq.(3) the 
equivalent joint torques associated with the endpoint force F. 

τ

Proof 

 We prove the theorem by using the Principle of Virtual Work. Consider virtual 
displacements at individual joints, n1 , and at the end-effecter, 

T
e

T
e , as shown in Figure 6.2.2. Virtual displacements are arbitrary infinitesimal 

displacements of a mechanical system that conform to the geometric constraints of the system. 
Virtual displacements are different from actual displacements, in that they must only satisfy 
geometric constraints and do not have to meet other laws of motion. To distinguish the virtual 
displacements from the actual displacements, we use the Greek letter δ rather than the roman d.                                 

qq ),,(
),( φxp δδδ =

 

 
iqδ  

 

 

 

 

 

 

 

 

 

 

We assume that joint torques n21  and endpoint force and moment, -F, act on 
the serial linkage system, while the joints and the end-effecter are moved in the directions 
geometrically admissible. Then, the virtual work done by the forces and moments is given by 

( T

- f  1, +nn- N  1, +nn

iτ  

exδ   eδϕ

Figure 6.2.2 Virtual displacements of the end effecter and individual joints 
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⋅−⋅−⋅++⋅+⋅= ++ 1,1,2211   (6.2.6) 

 

According to the principle of virtual work, the linkage system is in equilibrium if, and only if, the 
virtual work Workδ  vanishes for arbitrary virtual displacements that conform to geometric 
constraints. Note that the virtual displacements δq and δp are not independent, but are related by 
the Jacobian matrix given in eq.(5). The kinematic structure of the robot mechanism dictates that 
the virtual displacements δp is completely dependent upon the virtual displacement of the joints, 
δq. Substituting eq.(5) into eq.(6) yields 

qFJτqJFqτ δδδδ ⋅−=⋅−= TTTTWork )(        (6.2.7) 

Note that the vector of the virtual displacements δq consists of all independent variables, since 
the joint coordinates of an open kinematic chain are generalized coordinates that are complete 
and independent. Therefore, for the above virtual work to vanish for arbitrary virtual 
displacements we must have: 

FJτ T=            

This is eq.(6.2.4), and the theorem has been proven. 

 

 The above theorem has broad applications in robot mechanics, design, and control. We 
will use it repeatedly in the following chapters. 

Example 6.1 

 Figure 6.2.3 shows a two-dof articulated robot having the same link dimensions as the 
previous examples. The robot is interacting with the environment surface in a horizontal plane. 
Obtain the equivalent joint torques T

1 needed for pushing the surface with an endpoint 
force of T . Assume no friction. 

),( 2ττ=τ
yx FF ),(=F

The Jacobian matrix relating the end-effecter coordinates e and  to the joint 
displacements 

x ey
1θ  and 2θ  has been obtained in the previous chapter: 
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From Theorem 6.1, the equivalent joint torques are obtained by simply taking the transpose of the 
Jacobian matrix. 
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 (6.2.8) 
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Figure 6.2.3 Two-dof articulated robot pushing the environment surface 
 

6.3 Duality of Differential Kinematics and Statics 
 

We have found that the equivalent joint torques are related to the endpoint force by the 
Jacobian matrix, which is the same matrix that relates the infinitesimal joint displacements to the 
end-effecter displacement. Thus, the static force relationship is closely related to the differential 
kinematics. In this section we discuss the physical meaning of this observation.  

To interpret the similarity between differential kinematics and statics, we can use the 
linear mapping diagram of Figure 5.4.1. Recall that the differential kinematic equation can be 
regarded as a linear mapping when the Jacobian matrix is fixed at a given robot configuration. 
Figure 6.3.1 reproduces Figure 5.4.1 and completes it with a similar diagram associated with the 
static analysis. As before, the range space R(J) represents the set of all the possible end-effecter 
velocities generated by joint motions. When the Jacobian matrix is degenerate, or the robot 
configuration is singular, the range space does not span the whole vector space. Namely, there 
exists a direction in which the end-effecter cannot move with a non-zero velocity. See the 
subspace S2 in the figure. The null space N(J), on the other hand, represents the set of joint 
velocities that do not produce any velocity at the end-effecter. If the null space contains a non-
zero element, the differential kinematic equation has an infinite number of solutions that cause 
the same end-effecter velocity. 

 
The lower half of Figure 6.3.1 is the linear mapping associated with the static force 

relationship given by eq.(6.2.4). Unlike differential kinematics, the mapping of static forces is 
given by the transpose of the Jacobian, generating a mapping from the m-dimensional vector 
space Vm, associated with the Cartesian coordinates of the end-effecter, to the n-dimensional 
vector space Vn, associated with the joint coordinates. Therefore the joint torques τ are always 
determined uniquely for any arbitrary endpoint force F. However, for given joint torques, a 
balancing endpoint force does not always exist. As in the case of the differential kinematics, let us 
define the null space N(JT) and the range space R(JT) of the static force mapping. The null space 
N(JT)  represents the set of all endpoint forces that do not require any torques at the joints to bear 
the corresponding load. In this case the endpoint force is borne entirely by the structure of the 
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linkage mechanism, i.e. constraint forces. The range space R(JT), on the other hand, represents the 
set of all the possible joint torques that can balance the endpoint forces. 
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Figure 6.3.1 Duality of differential kinematics and statics 

 
The ranges and null spaces of J and JT are closely related. According to the rules of linear 

algebra, the null space N(J) is the orthogonal complement of the range space R(JT). Namely, if a 
non-zero n-vector x is in N(J) , it cannot also belong to R(JT), and vice-versa. If we denote by S1 
the orthogonal complement of N(J), then the range space R(JT) is identical to  S1, as shown in the 
figure. Also, space S3, i.e., the orthogonal complement of R(JT) is identical to N(J). What this 
implies is that, in the direction in which joint velocities do not cause any end-effecter velocity, the 
joint torques cannot be balanced with any endpoint force. In order to maintain a stationary 
configuration, the joint torques in this space must be zero. 

There is a similar correspondence in the end-effecter coordinate space Vm. The range 
space R(J) is the orthogonal complement to the null space N(JT). Hence, the subspace S2 in the 
figure is identical to N(JT), and the subspace S4 is identical to R(J). Therefore, no joint torques are 
required to balance the end point force when the external force acts in the direction in which the 
end-effecter cannot be moved by joint movements. Also, when the external endpoint force is 
applied in the direction along which the end-effecter can move, the external force must be borne 
entirely by the joint torques. When the Jacobian matrix is degenerate or the arm is in a singular 
configuration, the null space N(JT) has a non-zero dimension, and the external force can be borne 
in part by the mechanical structure. Thus, differential kinematics and statics are closely related. 
This relationship is referred to as the duality of differential kinematics and statics. 
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6.4 Closed-Loop Kinematic Chains 
 
 The relationship between joint torques and the endpoint force obtained in Theorem 6.1 
can be extended to a class of parallel-link mechanisms with closed kinematic-chains. It can also 
be extended to multi-fingered hands, leg locomotion, and other robot mechanisms having closed 
kinematic chains. In this section we discuss classes of closed kinematic chains based on the 
principle of virtual work. 
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Figure 6.4.1 Five-bar-link robot exerting endpoint force 
 
 We begin by revisiting the five-bar-link planar robot shown in Figure 6.4.1. This robot 
has two degrees of freedom, comprising two active joints, Joints 1 and 3, and three passive joints, 
Joints 2, 4, and 5. Therefore the virtual work associated with the endpoint force and joint toques 
is given by 
 

eyex yFxFWork δδδθτδθτδθτδθτδ −−+++= 55332211    (6.4.1) 
 
We assume no friction at the joints. Therefore the three passive joints cannot bear any torque load 
about their joint axis. Substituting 0542 === τττ  into the above yields 
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31 .     (6.4.2) 

 
For any given configuration of the robot, the virtual displacements of the end-effecter are 
uniquely determined by the virtual displacements of Joints 1 and 3. In fact, the former is related 
to the latter via the Jacobian matrix: 
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J         (6.4.3) 

Using this Jacobian, 
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qqFJτqJFqτ δδδδδ ∀=⋅−=⋅−= ,0)( TTTTWork    (6.4.4) 

 
where 

( ) ( )T
ee

T yx δδδδθδθδ == pq ,31      (6.4.5) 
 

Eq.(4) implies 
 

FJτ ⋅= T          (6.4.6) 
 

which is the same form as eq.(6.2.4). 
 
 In general the following Corollary holds. 
 
Corollary 6.1 
 Consider an n degree-of-freedom robot mechanism with n active joints. Assume that all 
the joints are frictionless, and that, for a given configuration of the robot mechanism, there exists 
a unique Jacobian matrix relating the virtual displacements of its end-effecter, , to the 
virtual displacements of the active joints, ,  

1mp ×ℜ∈δ
1nq ×ℜ∈δ

 
qJp δδ = .         (6.4.7) 

 
Then the equivalent joint torques  to bear an arbitrary endpoint force  is given 
by 

1nτ ×ℜ∈ 1mF ×ℜ∈

FJτ ⋅= T          (6.4.8) 
 

 
 Note that the joint coordinates associated with the active joints are not necessarily 
generalized coordinates that uniquely locate the system. For example, the arm configuration of 
the five-bar-link robot shown in Figure 6.4.1 is not uniquely determined with joint angles 1θ  and 

3θ  alone. There are two configurations for given 1θ  and 3θ . The corollary requires the 
differential relation to be defined uniquely in the vicinity of the given configuration. 
 
 
6.5 Over-Actuated Systems 
 
 If an n degree-of-freedom robot system has more than n active joints, or less than n active 
joints, the above corollary does not apply. These are called over-actuated and under-actuated 
systems, respectively. Over-actuated systems are of particular importance in many manipulation 
and locomotion applications. In the following, we will consider the static relationship among joint 
torques and endpoint forces for a class of over-actuated systems. 
 Figure 6.5.1 shows a two-fingered hand manipulating an object within a plane. Note that 
both fingers are connected at the fingertips holding the object. While holding the object, the 
system has three degrees of freedom. Since each finger has two active joints, the total number of 
active joints is four. Therefore the system is over-actuated. 
 Using the notation shown in the figure, the virtual work is given by 
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eyex yFxFWork δδδθτδθτδθτδθτδ −−+++= 44332211    (6.5.1) 
 
Note that only three virtual displacements of the four joint angles are independent. There exists a 
differential relationship between one of the joints, say 4θ , and the other three due to the 
kinematic constraint. Let us write it as  
 

qJ δδθ ⋅= c4          (6.5.2) 
 
 where are independent, and Jc is the 1x3 Jacobian associated with the 
constraint due to the closed kinematic chain. Substituting this equation together with the Jacobian 
relating the end effecter displacements to the tree joint displacements into eq.(1), 

( T
321 δθδθδθδ =q )

 
qqJFqJqτ δδδτδδ ∀=−+= ,04

T
c

TWork      (6.5.3) 
 

The virtual work vanished for an arbitrary qδ only when 

FJJτ TT
c +−= 4τ         (6.5.4) 

 
The two-fingered hand is at equilibrium only when the above condition is met. When the external 
endpoint force is zero: F=0, we obtain 
 

40 τT
cJτ −=          (6.5.5) 

 
 This gives a particular combination of joint torques that do not influence the force balance with 
the external endpoint load F. The joint torques having this particular proportion generate the 
internal force applied to the object, as illustrated in the figure. This internal force is a grasp force 
that is needed for performing a task. 
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Figure 6.5.1 Two-fingered hand manipulating a grasped object 
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Exercise 6.2 
 Define geometric parameters needed in Figure 6.5.1, and obtain the two Jacobian 
matrices associated with the two-fingered hand holding an object. Furthermore, obtain the grasp 
force using the Jacobian matrices and the joint torques. 
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