
Introduction to Robotics, H. Harry Asada 1

 
 

Chapter 5 
Differential Motion 

 

In the previous chapter, the position and orientation of the manipulator end-effecter were evaluated in 
relation to joint displacements. The joint displacements corresponding to a given end-effecter location 
were obtained by solving the kinematic equation for the manipulator. This preliminary analysis 
permitted the robotic system to place the end-effecter at a specified location in space. In this chapter, 
we are concerned not only with the final location of the end-effecter, but also with the velocity at 
which the end-effecter moves. In order to move the end-effecter in a specified direction at a specified 
speed, it is necessary to coordinate the motion of the individual joints. The focus of this chapter is the 
development of fundamental methods for achieving such coordinated motion in multiple-joint robotic 
systems. As discussed in the previous chapter, the end-effecter position and orientation are directly 
related to the joint displacements. Hence, in order to coordinate joint motions, we derive the 
differential relationship between the joint displacements and the end-effecter location, and then solve 
for the individual joint motions. 
 
5.1 Differential Relationship 

We begin by considering a two degree-of-freedom planar robot arm, as shown in Figure 5.1.1. 
The kinematic equations relating the end-effecter coordinates and  to the joint displacements ex ye

1θ  and 2θ  are given by 
 

)cos(cos),( 2121121 θθθθθ ++= AAex       (5.1.1) 
)sin(sin),( 2121121 θθθθθ ++= AAey       (5.1.2) 
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Figure 5.1.1 Two dof planar robot with two revolute joints 
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 We are concerned with “small movements” of the individual joints at the current position, 
and we want to know the resultant motion of the end-effecter. This can be obtained by the total 
derivatives of the above kinematic equations: 
 

2
2

21
1

1

21 ),(),( θ
θ
θθθ

θ
θθ dxdxdx ee

e ∂
∂

+
∂

∂
=     (5.1.3)  

2
2

21
1

1

21 ),(),( θ
θ
θθθ

θ
θθ dydydy ee

e ∂
∂

+
∂

∂
=       (5.1.4)  

 
where are variables of both ee yx , 1θ and 2θ , hence two partial derivatives are involved in the 
total derivatives. In vector form the above equations reduce to 
 

qJx dd ⋅=         (5.1.5) 
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and J is a 2 by 2 matrix given by 
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The matrix J comprises the partial derivatives of the functions 21 ),( θθe  and 21x ),( θθe with 
respect to joint displacements 21

y
andθθ . The matrix J, called the Jacobian Matrix, represents the 

differential relationship between the joint displacements and the resulting end-effecter motion. 
Note that most robot mechanisms have a multitude of active joints, hence a matrix is needed for 
describing the mapping of the vectorial joint motion to the vectorial end-effecter motion.  

For the two-dof robot arm of Figure 5.1.1, the components of the Jacobian matrix are 
computed as  
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By definition, the Jacobian collectively represents the sensitivities of individual end-effecter 
coordinates to individual joint displacements. This sensitivity information is needed in order to 
coordinate the multi dof joint displacements for generating a desired motion at the end-effecter.  

Consider the instant when the two joints of the robot arm are moving at joint velocities 
, and let be the resultant end-effecter velocity vector. The Jacobian 

provides the relationship between the joint velocities and the resultant end-effecter velocity. 
Indeed, dividing eq.(5) by the infinitesimal time increment dt yields 
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dt
d or         ,        (5.1.9) 

 
Thus the Jacobian determines the velocity relationship between the joints and the end-effecter.  
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5.2 Properties of the Jacobian 
 

The Jacobian plays an important role in the analysis, design, and control of robotic 
systems. It will be used repeatedly in the following chapters. It is worth examining basic 
properties of the Jacobian, which will be used throughout this book.  

We begin by dividing the 2-by-2 Jacobian of eq.(5.1.8) into two column vectors: 
 

12
2121 ,),,( ×ℜ∈= JJJJJ        (5.2.1) 

 
Then eq.(5.1.9) can be written as 
 

2211 θθ �� ⋅+⋅= JJve         (5.2.2) 
 

The first term on the right-hand side accounts for the end-effecter velocity induced by the first 
joint only, while the second term represents the velocity resulting from the second joint motion 
only. The resultant end-effecter velocity is given by the vectorial sum of the two. Each column 
vector of the Jacobian matrix represents the end-effecter velocity generated by the corresponding 
joint moving at a unit velocity when all other joints are immobilized. 
 Figure 5.2.1 illustrates the column vectors 21 of the 2 dof robot arm in the two-
dimensional space. Vector 2J , given by the second column of eq.(5.1. 8), points in the direction 
perpendicular to link 2. Note, however, that vector 1 is not perpendicular to link 1 but is 
perpendicular to line OE, the line from joint 1 to the endpoint E. This is because 1  represents the 
endpoint velocity induced by joint 1 when joint 2 is immobilized. In other words, links 1 and 2 
are rigidly connected, becoming a single rigid body of link length OE, and  is the tip velocity 
of the link OE. 
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Figure 5.2.1  Geometric interpretation of the column vectors of the Jacobian  
  

In general, each column vector of the Jacobian represents the end-effecter velocity and 
angular velocity generated by the individual joint velocity while all other joints are immobilized. 
Let  be the end-effecter velocity and angular velocity, or the end-effecter velocity for short, and p�
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iJ be the i-th column of the Jacobian. The end-effecter velocity is given by a linear combination 
of the Jacobian column vectors weighted by the individual joint velocities. 
 

nn qq �"�� ⋅++⋅= JJp 11       (5.2.3) 
 

where n is the number of active joints. The geometric interpretation of the column vectors is that 
 is the end-effecter velocity and angular velocity when all the joints other than joint i are 

immobilized and only the i-th joint is moving at a unit velocity. 
iJ

 
Exercise Consider the two-dof articulated robot shown in Figure 5.2.1 again. This time we 
use “absolute” joint angles measured from the positive x-axis, as shown in Figure 5.2.2. Note that 
angle 2θ  is measured from the fixed frame, i.e. the x-axis, rather than a relative frame, e.g.  link 
1. Obtain the 2-by-2 Jacobian and illustrate the two column vectors on the xy plane. Discuss the 
result in comparison with the previous case shown in Figure 5.2.1. 
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Figure 5.2.2  Absolute joint angles measured from the x-axis. 

 
Note that the elements of the Jacobian are functions of joint displacements, and thereby 

vary with the arm configuration. As expressed in eq.(5.1.8), the partial derivatives, 
ieie yx θθ ∂∂∂∂ /,/  , are functions of 21 andθθ . Therefore, the column vectors 21 vary 

depending on the arm posture. Remember that the end-effecter velocity is given by the linear 
combination of the Jacobian column vectors 21 . Therefore, the resultant end-effecter velocity 
varies depending on the direction and magnitude of the Jacobian column vectors 21  spanning 
the two dimensional space. If the two vectors point in different directions, the whole two-
dimensional space is covered with the linear combination of the two vectors. That is, the end-
effecter can be moved in an arbitrary direction with an arbitrary velocity. If, on the other hand, 
the two Jacobian column vectors are aligned, the end-effecter cannot be moved in an arbitrary 
direction. As shown in Figure 5.2.3, this may happen for particular arm postures where the two 
links are fully contracted or extended. These arm configurations are referred to as singular 
configurations. Accordingly, the Jacobian matrix becomes singular at these positions. Using the 
determinant of a matrix, this condition is expressed as  

, JJ

, JJ
, JJ

 
0det =J          (5.2.4) 
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In fact, the Jacobian degenerates at the singular configurations, where joint 2 is 0 or 180 

degrees. Substituting πθ ,02 =  into eq.(5.1.8) yields 
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Note that both column vectors point in the same direction and thereby the determinant becomes 
zero. 
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Figure 5.2.3 Singular configurations of the two-dof articulated robot 
 
5.3 Inverse Kinematics of Differential Motion 
 
 Now that we know the basic properties of the Jacobian, we are ready to formulate the 
inverse kinematics problem for obtaining the joint velocities that allow the end-effecter to move 
at a given desired velocity. For the two dof articulated robot, the problem is to find the joint 
velocities , for the given end-effecter velocity . If the arm 
configuration is not singular, this can be obtained by taking the inverse of the Jacobian matrix in 
eq.(5.1.9), 

T),( 21 θθ ��� =q T
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e
1 vJq ⋅= −�         (5.3.1) 

 
Note that the solution is unique. Unlike the inverse kinematics problem discussed in the previous 
chapter, the differential kinematics problem has a unique solution as long as the Jacobian is non-
singular.  

The above solution determines how the end-effecter velocity ve must be decomposed, or 
resolved, to individual joint velocities. If the controls of the individual joints regulate the joint 
velocities so that they can track the resolved joint velocities q , the resultant end-effecter velocity 
will be the desired ve. This control scheme is called Resolved Motion Rate Control, attributed to 
Daniel Whitney (1969). Since the elements of the Jacobian matrix are functions of joint 
displacements, the inverse Jacobian varies depending on the arm configuration. This means that 
although the desired end-effecter velocity is constant, the joint velocities are not. Coordination is 

�

Department of Mechanical Engineering  Massachusetts Institute of Technology 



Introduction to Robotics, H. Harry Asada 6

thus needed among the joint velocity control systems in order to generate a desired motion at the 
end-effecter.  
 
Example Consider the two dof articulated robot arm again. We want to move the endpoint 
of the robot at a constant speed along a path staring at point A on the x-axis, (+2, 0), go around 
the origin through points B (+ε, 0) and C (0, +ε), and reach the final point D (0, +2) on the y-axis. 
See Figure 5.3.1. For simplicity, each arm link is of unit length. Obtain the profiles of the 
individual joint velocities as the end-effecter tracks the path at the constant speed. 
 
 Substituting into eq.(1) yields T

yx vv ),(=ev
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Figure 5.3.1 trajectory tracking near the singular points 

 
Figure 5.3.2 shows the resolved joint velocities 21 computed along the specified 

trajectory. Note that the joint velocities are extremely large near the initial and final points, and 
are unbounded at points A and D. These are at the arm’s singular configurations, 2

,θθ ��

0=θ . As the 
end-effecter gets close to the origin, the velocity of the first joint becomes very large in order to 
quickly turn the arm around from point B to C. At these configurations, the second joint is almost 
–180 degrees, meaning that the arm is near a singularity. This result agrees with the singularity 
condition using the determinant of the Jacobian: 
 

",2,1,0,,0sindet 22 ±±==∴== kkπθθJ     (5.3.4) 
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In eqs.(2) and (3) above, the numerators are divided by 2sinθ , the determinant of the Jacobian. 
Therefore, the joint velocities  blow up as the arm configuration gets close to the singular 
configuration.  

21,θθ ��
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Figure 5.3.2 Joint velocity profiles for tracking the trajectory in Figure 5.3.1 
 

Furthermore, the arm’s behavior near the singular points can be analyzed by substituting 
πθ ,02 =  into the Jacobian, as obtained in eq.(5.2.5). For 121 == AA and 02 =θ , the Jacobian 

column vectors reduce to the ones in the same direction: 
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As illustrated in Figure 5.2.3 (singular configuration A), both joints 21  generate the endpoint 
velocity along the same direction. Note that no endpoint velocity can be generated in the direction 
perpendicular to the aligned arm links. For 

,θθ ��
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The first joint cannot generate any endpoint velocity, since the arm is fully contracted. See 
singular configuration B in Figure 5.2.3. 
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 At a singular configuration, there is at least one direction in which the robot cannot 
generate a non-zero velocity at the end-effecter. This agrees with the previous discussion; the 
Jacobian is degenerate at a singular configuration, and the linear combination of the Jacobian 
column vectors cannot span the whole space. 
 
Exercise 5.2 
 A three-dof spatial robot arm is shown in the figure below. The robot has three revolute 
joints that allow the endpoint to move in the three dimensional space. However, this robot 
mechanism has singular points inside the workspace. Analyze the singularity, following the 
procedure below.  
 
Step 1 Obtain each column vector of the Jacobian matrix by considering the endpoint velocity 
created by each of the joints while immobilizing the other joints. 
Step 2 Construct the Jacobian by concatenating the column vectors, and set the determinant of 
the Jacobian to zero for singularity: 0det =J . 
Step 3 Find the joint angles that make 0det =J .  
Step 4 Show the arm posture that is singular. Show where in the workspace it becomes singular.  
For each singular configuration, also show in which direction the endpoint cannot have a non-
zero velocity. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3.3 Schematic of a three dof articulated robot 

 
5.4 Singularity and Redundancy 
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We have seen in this chapter that singular configurations exist for many robot 
mechanisms. Sometimes, such singular configurations exist in the middle of the workspace, 
seriously degrading mobility and dexterity of the robot. At a singular point, the robot cannot 
move in certain directions with a non-zero velocity. To overcome this difficulty, several methods 
can be considered. One is to plan a trajectory of the robot motion such that it will not go into 
singular configurations. Another method is to include additional degrees of freedom, so that even 
when some degrees of freedom are lost at a certain configuration, the robot can still maintain the 
necessary degrees of freedom. Such a robot is referred to as a redundant robot. In this section we 
will discuss singularity and redundancy, and obtain general properties of differential motion for 
general n degree of freedom robots. 
 As studied in Section 5.3, a unique solution exists to the differential kinematic equation, 
(5.3.1), if the arm configuration is non-singular. However, when a planar (spatial) robot arm has 
more than three (six) degrees of freedom, we can find an infinite number of solutions that provide 
the same motion at the end-effecter. Consider for instance the human arm, which has seven 
degrees of freedom excluding the joints at the fingers. When the hand is placed on a desk and 
fixed in its position and orientation, the elbow position can still vary continuously without 
moving the hand. This implies that a certain ratio of joint velocities exists that does not cause any 
velocity at the hand. This specific ratio of joint velocities does not contribute to the resultant 
endpoint velocity.  Even if these joint velocities are superimposed onto other joint velocities, the 
resultant end-effecter velocity is the same. Consequently, we can find different solutions of the 
instantaneous kinematic equation for the same end-effecter velocity. In the following, we 
investigate the fundamental properties of the differential kinematics when additional degrees of 
freedom are involved. 

To formulate a differential kinematic equation for a general n degree-of-freedom robot 
mechanism, we begin by modifying the definition of the vector dxe representing the end-effecter 
motion. In eq. (5.1.6), dxe was defined as a two-dimensional vector that represents the 
infinitesimal translation of an end-effecter. This must be extended to a general m-dimensional 
vector. For planar motion, m may be 3, and for spatial motion, m may be six. However, the 
number of variables that we need to specify for performing a task is not necessarily three or six. 
In arc welding, for example, only five independent variables of torch motion need be controlled. 
Since the welding torch is usually symmetric about its centerline, we can locate the torch with an 
arbitrary orientation about the centerline. Thus five degrees of freedom are sufficient to perform 
arc welding.  In general, we describe the differential end-effecter motion by m independent 
variables dp that must be specified to perform a given task.  
 

[ 1
21

×ℜ∈= mT
mdpdpdpd "p ]       (5.4.1) 

 
Then the differential kinematic equation for a general n degree-of-freedom robot is given by 
 

qJp dd ⋅=          (5.4.2) 
 

where the dimension of the Jacobian J is m by n; . When n is larger than m and J is of 
full rank, there are (n-m) arbitrary variables in the general solution of eq.(2). The robot is then 
said to have (n-m) redundant degrees of freedom for the given task. 

nm×ℜ∈J

 Associated with the above differential equation, the velocity relationship can be written 
as 

qJp �� ⋅=          (5.4.3) 
 

where  and  are velocities of the end effecter and the joints, respectively. p� q�
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Equation (3) can be regarded as a linear mapping from n-dimensional vector space Vn to 
m-dimensional space Vm. To characterize the solution to eq.(3), let us interpret the equation using 
the linear mapping diagram shown in Figure 5.4.1. The subspace R(J) in the figure is the range 
space of the linear mapping. The range space represents all the possible end-effecter velocities 
that can be generated by the n joints at the present arm configuration. If the rank of J is of full 
row rank, the range space covers the entire vector space Vm.  Otherwise, there exists at least one 
direction in which the end-effecter cannot be moved with non-zero velocity. The subspace N(J) 
of Figure 5.4.1 is the null space of the linear mapping. Any element in this subspace is mapped 
into the zero vector in Vm. Therefore, any joint velocity vector q  that belongs to the null space 
does not produce any velocity at the end-effecter. Recall the human arm discussed before. The 
elbow can move without moving the hand. Joint velocities for this motion are involved in the null 
space, since no end-effecter motion is induced. If the Jacobian is of full rank, the dimension of the 
null space, dim N(J), is the same as the number of redundant degrees of freedom (n-m). When the 
Jacobian matrix is degenerate, i.e. not of full rank, the dimension of the range space, dim R(J), 
decreases, and at the same time the dimension of the null space increases by the same amount. 
The sum of the two is always equal to n: 

�

 
nNR =+ )(dim)(dim RJ       (5.4.4) 

 
Let q * be a particular solution of eq.(3) and  be a vector involved in the null space, 

then the vector of the form 

� 0q�

0* qqq ��� k+=  is also a solution of eq.(3), where k is an arbitrary 
scalar quantity. Namely, 

 
pqJqJqJqJ ����� ==+= ** 0k       (5.4.5) 

Since the second term  can be chosen arbitrarily within the null space, an infinite number of 
solutions exist for the linear equation, unless the dimension of the null space is 0. The null space 
accounts for the arbitrariness of the solutions. The general solution to the linear equation involves 
the same number of arbitrary parameters as the dimension of the null space. 
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Figure 5.4.1 Linear mapping diagram 
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