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Chapter 4 
Planar Kinematics 

 
  Kinematics is Geometry of Motion. It is one of the most fundamental disciplines in 
robotics, providing tools for describing the structure and behavior of robot mechanisms. In this 
chapter, we will discuss how the motion of a robot mechanism is described, how it responds to 
actuator movements, and how the individual actuators should be coordinated to obtain desired 
motion at the robot end-effecter. These are questions central to the design and control of robot 
mechanisms. 
 To begin with, we will restrict ourselves to a class of robot mechanisms that work within 
a plane, i.e. Planar Kinematics. Planar kinematics is much more tractable mathematically, 
compared to general three-dimensional kinematics. Nonetheless, most of the robot mechanisms of 
practical importance can be treated as planar mechanisms, or can be reduced to planar problems. 
General three-dimensional kinematics, on the other hand, needs special mathematical tools, which 
will be discussed in later chapters. 
 
4.1 Planar Kinematics of Serial Link Mechanisms 
 
Example 4.1 Consider the three degree-of-freedom planar robot arm shown in Figure 4.1.1. 
The arm consists of one fixed link and three movable links that move within the plane. All the 
links are connected by revolute joints whose joint axes are all perpendicular to the plane of the 
links. There is no closed-loop kinematic chain; hence, it is a serial link mechanism. 
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Figure 4.1.1 Three dof planar robot with three revolute joints 
 

 To describe this robot arm, a few geometric parameters are needed. First, the length of 
each link is defined to be the distance between adjacent joint axes. Let points O, A, and B be the 
locations of the three joint axes, respectively, and point E be a point fixed to the end-effecter. 
Then the link lengths are EBBAAO === 321 ,, . Let us assume that Actuator 1 driving 
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link 1 is fixed to the base link (link 0), generating angle 1θ , while Actuator 2 driving link 2 is 
fixed to the tip of Link 1, creating angle 2θ  between the two links, and Actuator 3 driving Link 3 
is fixed to the tip of Link 2, creating angle 3θ , as shown in the figure. Since this robot arm 
performs tasks by moving its end-effecter at point E, we are concerned with the location of the 
end-effecter. To describe its location, we use a coordinate system, O-xy, fixed to the base link 
with the origin at the first joint, and describe the end-effecter position with coordinates e and 

e . We can relate the end-effecter coordinates to the joint angles determined by the three 
actuators by using the link lengths and joint angles defined above: 

x
y

 

)cos()cos(cos 321321211 θθθθθθ +++++=ex     (4.1.1) 
)sin()sin(sin 321321211 θθθθθθ +++++=ey     (4.1.2) 

 
This three dof robot arm can locate its end-effecter at a desired orientation as well as at a desired 
position. The orientation of the end-effecter can be described as the angle the centerline of the 
end-effecter measured from the positive x coordinate axis. This end-effecter orientation eφ  is 
related to the actuator displacements as 
 

321 θθθφ ++=e         (4.1.3) 
 

 
 The above three equations describe the position and orientation of the robot end-effecter 
viewed from the fixed coordinate system in relation to the actuator displacements. In general, a 
set of algebraic equations relating the position and orientation of a robot end-effecter, or any 
significant part of the robot, to actuator or active joint displacements, is called Kinematic 
Equations, or more specifically, Forward Kinematic Equations in the robotics literature. 
 
Exercise 4.1 
 Shown below in Figure 4.1.2 is a planar robot arm with two revolute joints and one 
prismatic joint. Using the geometric parameters and joint displacements, obtain the kinematic 
equations relating the end-effecter position and orientation to the joint displacements. 
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Figure 4.1.2 Three dof robot with two revolute joints and one prismatic joint 
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 Now that the above Example and Exercise problems have illustrated kinematic equations, 
let us obtain a formal expression for kinematic equations. As mentioned in the previous chapter, 
two types of joints, prismatic and revolute joints, constitute robot mechanisms in most cases. The 
displacement of the i-th joint is described by distance di if it is a prismatic joint, and by angle iθ  
for a revolute joint. For formal expression, let us use a generic notation: qi. Namely, joint 
displacement qi represents either distance di or angle iθ depending on the type of joint. 
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Prismatic joint 
 

Revolute joint 
 

We collectively represent all the joint displacements involved in a robot mechanism with a 
column vector: , where n is the number of joints. Kinematic equations 
relate these joint displacements to the position and orientation of the end-effecter. Let us 
collectively denote the end-effecter position and orientation by vector p. For planar mechanisms, 
the end-effecter location is described by three variables: 
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Using these notations, we represent kinematic equations as a vector function relating p to q: 
 

113 ,),( nxx qpqfp ℜ∈ℜ∈=       (4.1.6) 
 

 For a serial link mechanism, all the joints are usually active joints driven by individual 
actuators. Except for some special cases, these actuators uniquely determine the end-effecter 
position and orientation as well as the configuration of the entire robot mechanism. If there is a 
link whose location is not fully determined by the actuator displacements, such a robot 
mechanism is said to be under-actuated. Unless a robot mechanism is under-actuated, the 
collection of the joint displacements, i.e. the vector q, uniquely determines the entire robot 
configuration. For a serial link mechanism, these joints are independent, having no geometric 
constraint other than their stroke limits. Therefore, these joint displacements are generalized 
coordinates that locate the robot mechanism uniquely and completely. Formally, the number of 
generalized coordinates is called degrees of freedom. Vector q is called joint coordinates, when 
they form a complete and independent set of generalized coordinates.  
 
4.2 Inverse Kinematics of Planar Mechanisms 
 

The vector kinematic equation derived in the previous section provides the functional 
relationship between the joint displacements and the resultant end-effecter position and 
orientation. By substituting values of joint displacements into the right-hand side of the kinematic 
equation, one can immediately find the corresponding end-effecter position and orientation. The 
problem of finding the end-effecter position and orientation for a given set of joint displacements 
is referred to as the direct kinematics problem. This is simply to evaluate the right-hand side of 
the kinematic equation for known joint displacements. In this section, we discuss the problem of 
moving the end-effecter of a manipulator arm to a specified position and orientation. We need to 
find the joint displacements that lead the end-effecter to the specified position and orientation. 
This is the inverse of the previous problem, and is thus referred to as the inverse kinematics 
problem. The kinematic equation must be solved for joint displacements, given the end-effecter 
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position and orientation. Once the kinematic equation is solved, the desired end-effecter motion 
can be achieved by moving each joint to the determined value. 

In the direct kinematics problem, the end-effecter location is determined uniquely for any 
given set of joint displacements. On the other hand, the inverse kinematics is more complex in the 
sense that multiple solutions may exist for the same end-effecter location. Also, solutions may not 
always exist for a particular range of end-effecter locations and arm structures.  Furthermore, 
since the kinematic equation is comprised of nonlinear simultaneous equations with many 
trigonometric functions, it is not always possible to derive a closed-form solution, which is the 
explicit inverse function of the kinematic equation. When the kinematic equation cannot be 
solved analytically, numerical methods are used in order to derive the desired joint displacements. 
 
Example 4.2  Consider the three dof planar arm shown in Figure 4.1.1 again. To solve its 
inverse kinematics problem, the kinematic structure is redrawn in Figure 4.2.1. The problem is to 
find three joint angles 321 ,, θθθ  that lead the end effecter to a desired position and orientation, 

eee yx φ,, . We take a two-step approach. First, we find the position of the wrist, point B, from 
eee yx φ,, . Then we find 21,θθ  from the wrist position. Angle 3θ  can be determined immediately 

from the wrist position. 
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Figure 4.2.1 Skeleton structure of the robot arm of Example 4.1 

 
Let w and w be the coordinates of the wrist. As shown in Figure 4.2.1, point B is at 

distance 3  from the given end-effecter position E. Moving in the opposite direction to the end 
effecter orientation

x y

eφ , the wrist coordinates are given by 
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Note that the right hand sides of the above equations are functions of eee yx φ,,  alone. From these 
wrist coordinates, we can determine the angle α  shown in the figure.1 

w

w

x
y1tan−=α          (4.2.2) 

Next, let us consider the triangle OAB and define angles γβ , , as shown in the figure. This 
triangle is formed by the wrist B, the elbow A, and the shoulder O. Applying the law of cosines to 
the elbow angle β  yields 

2
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2
2

2
1 cos2 r=−+ β        (4.2.3) 

where  , the squared distance between O and B. Solving this for angle 222
ww yxr += β  yields  
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Solving this for γ yields 
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From the above 21,θθ we can obtain 

213 θθφθ −−= e         (4.2.7) 

Eqs. (4), (6), and (7) provide a set of joint angles that locates the end-effecter at the 
desired position and orientation. It is interesting to note that there is another way of reaching the 
same end-effecter position and orientation, i.e. another solution to the inverse kinematics 
problem. Figure 4.2.2 shows two configurations of the arm leading to the same end-effecter 
location: the elbow down configuration and the elbow up configuration. The former corresponds 
to the solution obtained above. The latter, having the elbow position at point A’, is symmetric to 
the former configuration with respect to line OB, as shown in the figure. Therefore, the two 
solutions are related as 
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      (4.2.8) 

 Inverse kinematics problems often possess multiple solutions, like the above example, 
since they are nonlinear. Specifying end-effecter position and orientation does not uniquely 
determine the whole configuration of the system. This implies that vector p, the collective 
position and orientation of the end-effecter, cannot be used as generalized coordinates.  

The existence of multiple solutions, however, provides the robot with an extra degree of 
flexibility. Consider a robot working in a crowded environment. If multiple configurations exist 
for the same end-effecter location, the robot can take a configuration having no interference with 

                                                 
1 Unless noted specifically we assume that the arc tangent function takes an angle in a proper quadrant 
consistent with the signs of the two operands.  
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the environment. Due to physical limitations, however, the solutions to the inverse kinematics 
problem do not necessarily provide feasible configurations. We must check whether each solution 
satisfies the constraint of movable range, i.e. stroke limit of each joint.  
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Figure 4.2.2 Multiple solutions to the inverse kinematics problem of Example 4.2 
 
 

4.3 Kinematics of Parallel Link Mechanisms 
 
Example 4.3 Consider the five-bar-link planar robot arm shown in Figure 4.3.1. 
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Note that Joint 2 is a passive joint. Hence, angle 2θ is a dependent variable. Using 2θ , however, 
we can obtain the coordinates of point A: 
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Point A must be reached via the branch comprising Links 3 and 4. Therefore, 
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Equating these two sets of equations yields two constraint equations: 
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Note that there are four variables and two constraint equations. Therefore, two of the variables, 
such as 31,θθ , are independent. It should also be noted that multiple solutions exist for these 
constraint equations.  
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Figure 4.3.1 Five-bar-link mechanism 
 

 Although the forward kinematic equations are difficult to write out explicitly, the inverse 
kinematic equations can be obtained for this parallel link mechanism. The problem is to find 

31,θθ  that lead the endpoint to a desired position: . We will take the following procedure: ee yx ,

Step 1 Given , find ee yx , 21,θθ by solving the two-link inverse kinematics problem. 

Step 2 Given 21,θθ , obtain . This is a forward kinematics problem. AA yx ,

Step 3 Given , find AA yx , 43,θθ  by solving another two-link inverse kinematics 
problem. 

 
 

 
Example 4.4 Obtain the joint angles of the dog’s legs, given the body position and orientation. 
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Figure 4.3.2 A doggy robot with two legs on the ground 
 

The inverse kinematics problem: 
 Step 1 Given BBB yx φ,, , find and  AA yx , CC yx ,
 Step 2 Given , find AA yx , 21,θθ  

Step 3 Given , find CC yx , 43,θθ  
 
 
4.4 Redundant mechanisms 
 

A manipulator arm must have at least six degrees of freedom in order to locate its end-
effecter at an arbitrary point with an arbitrary orientation in space. Manipulator arms with less 
than 6 degrees of freedom are not able to perform such arbitrary positioning. On the other hand, if 
a manipulator arm has more than 6 degrees of freedom, there exist an infinite number of solutions 
to the kinematic equation. Consider for example the human arm, which has seven degrees of 
freedom, excluding the joints at the fingers. Even if the hand is fixed on a table, one can change 
the elbow position continuously without changing the hand location. This implies that there exist 
an infinite set of joint displacements that lead the hand to the same location. Manipulator arms 
with more than six degrees of freedom are referred to as redundant manipulators. We will discuss 
redundant manipulators in detail in the following chapter.  
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