Massachusetts Institute of Technology Department of Mechanical Engineering

2.12 Introduction to Robotics Exercise Problems for the End-of-Term Examination

Problem 1

A carpenter robot is fixing a screw with a screwdriver, as shown in the figure below. Assume that the task process is quasi-static and friction-less. Use the C-frame shown in the figure. Note that the robot, although not shown, holds the screwdriver. At the instant shown, the y-axis of the C-frame is perpendicular to the groove of the screw head. The pitch of the screw is p, and the screw head is tightly mated with the screwdriver, having no play in the y direction. Answer the following questions.

- a). Translational and rotational velocities in the z direction are coupled to each other due to the screw. Consider the $v_z \omega_z$ plane shown below in order to describe the directions of constraint space and admissible motion space. Note that v_o is in the direction of admissible motion space while v_c is in the direction of constraint space. Obtain the components of the vectors pointing in the directions of v_o and v_c .
- b). Obtain the natural and artificial constraints for the robot to insert the screw based on hybrid position and force control. Use v_a and v_c as well as associated force/torque f_a and f_c for describing the natural and artificial constraints.

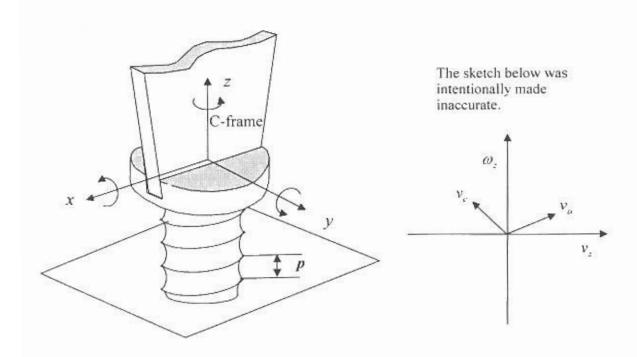


Figure 1 Screw with C-frame and $v_z - \omega_z$ plane

Problem 2

A two degree-of-freedom robot with one prismatic joint is shown below. Note that the prismatic joint is in the direction of angle ϕ from the centerline of the first link. As shown in the figure, joint angle θ and distance z between the tip of the first link and the mass centroid of the second link are used as generalized coordinates. The first actuator fixed to the base produces torque r about the first joint, while the second actuator located at the tip of the first link generates linear force f acting on the second link. Using the parameters shown in the figure, answer the following questions.

- a) Obtain the moment of inertia seen by the first joint when the second joint is fixed at z.
- Sketch free-body diagrams of the individual links and obtain Newton-Euler equations. Ignore friction.
- Eliminate the constraint force and moment between the two links, and obtain the closed-form equations of motion with respect to generalized coordinates, θ and z.
- d) When the first joint is rotating at a constant speed $\dot{\theta}=\omega_0$, the second link moves at a constant linear velocity $\dot{z}=V_0$. Obtain the Coriolis force induced in the second link and show in which direction the Coriolis force is acting. Obtain the torque acting on the first joint due to the Coriolis force, and show that this torques agrees with the corresponding nonlinear term in the equations of motion.

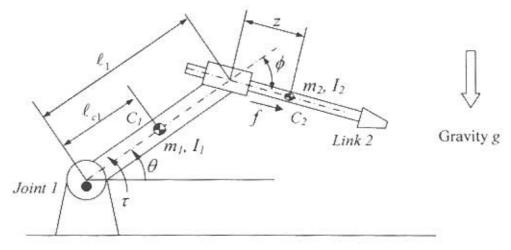


Figure 1

e) We want to decouple and linearize the system with respect to the generalized coordinates, θ and z, and form independent single-input-single-output PD control loops as shown in Figure 2. Obtain the computed torque control law to achieve this control and show the block diagram of the control system, including both the computed control loops and the PD control loops.

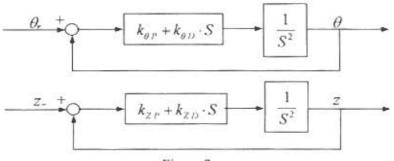
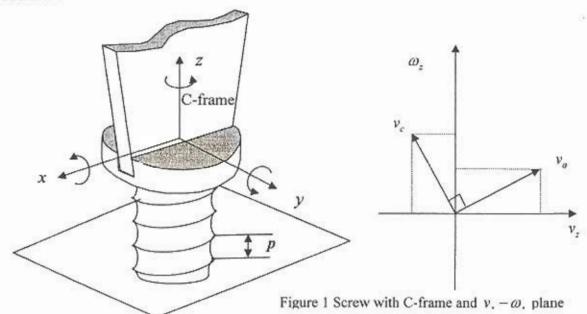


Figure 2

Massachusetts Institute of Technology Department of Mechanical Engineering

2.12 Introduction to Robotics End-of-Term Examination Solutions December 1, 2004

Problem 1



a). V_{Ξ} and W_{Ξ} are related: $V_{\Xi} = \frac{P}{2\pi}W_{\Xi}$, or V_{Ξ} : $W_{\Xi} = P:2\pi$. This means that in the $V_{\Xi} - W_{\Xi}$ plane the direction of admissible motion, denoted by vector Q is $Q = \begin{bmatrix} P \\ 2\pi \end{bmatrix}$

The constraint space is orthogonal to a. Therefore the direction denoted by vector C is

$$C = \begin{bmatrix} -2\pi \\ p \end{bmatrix}$$

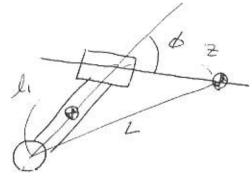
Note that
$$Q^TC = \begin{bmatrix} p \\ 2\pi \end{bmatrix}^T \begin{bmatrix} -2\pi \\ p \end{bmatrix} = 0$$
. $Q \perp C$.

1-b). Now, instead of Vz and Wz, let us use Va and Vc ax new coordinates for describing the natural and afficial constraints. Good thing, axes Va and Vc are completely aligned with the directions of admissible motion and constraint. Unlike Vz and Wz, admissible motion space and constraint space are not mixed.

	Kinematic		Static	
Natural	$V_{y} = 0$ $U_{\chi} = 0$ $U_{Y} = 0$	$V_c = 0$	fx=0	fa = 0
Artificial Constraint	V7=0	va =-Ko	$f_{y}=0$ $T_{x}=0$ $T_{y}=0$	fc= -F<0

Note fa and fc are forces (in fact, generalized forces) corresponding to va and vc, respectively.

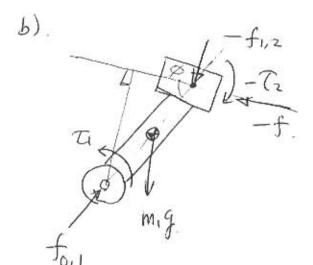
Problem 2

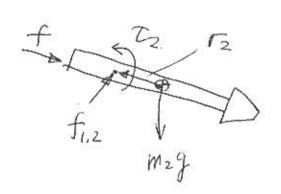


$$H_{11} = I_1 + m_1 \ell c_1^2 + I_2 + m_2 L^2$$

$$L^2 = \ell_1^2 + Z^2 - 2\ell_1 Z \cos(\pi - \phi)$$

$$= \ell_1^2 + Z^2 + 2\ell_1 Z \cos \phi$$





Rotation about a fixed point.

$$(I_1 + m_1 l_{c_1}^2) \ddot{\theta} = T_1 - T_2 + l_1 \binom{c}{s} \times (-f_{1,2}) + l_1 + m \phi \cdot f$$

 $-m_1 g l_{c_1} cos \theta$... Link 1

Link 2.

$$I_{2}\ddot{\theta} = T_{2} + \Gamma_{2} \times f_{1,2}$$

$$M_{2}\ddot{\chi}_{C2} = f_{1,2} + \begin{pmatrix} 0 \\ -M_{2}g \end{pmatrix} + f\begin{pmatrix} \cos(\theta - \phi) \\ \sin(\theta - \phi) \end{pmatrix}$$

$$\Gamma_{2} = -2 \begin{pmatrix} \cos(\theta - \phi) \\ \sin(\theta - \phi) \end{pmatrix}$$

Find
$$\tilde{x}_{cz} = \left(\frac{1}{2}\frac{\tilde{\theta}(\sin\theta)}{(\cos\theta)} - \frac{1}{2}r^2(\cos\theta) + \frac{1}{2}(\cos\theta - \frac{1}{2}) + \frac{1}{2}(-\sin\theta - \frac{1}{2}) - \frac{1}{2}r^2(\cos\theta - \frac{1}{2}) + (\frac{1}{2}\theta + \frac{1}{2}\theta)(\cos\theta - \frac{1}{2})\right)$$

Note that $f_{1z} = \int_{c}(\cos\theta) + \int_{c}(\cos\theta - \frac{1}{2}e) - \frac{1}{2}r\cos\theta - \frac{1}{2}e + \frac{1}$

+ maglicosocoszo-6 ?

$$\begin{array}{l} :: \ \, T_1 = \left(T_1 + T_2 + m l_{e_1}^2 \right) \dot{\theta} \ + \ \left(\ \frac{1}{2} m_2 \right) \left(l_1 \cos(\varphi + \overline{z}) \dot{\theta} - \overline{z} m_2 l_1 \sin(\varphi \, \dot{\theta}^2 + 2 \pi m_2 \overline{z} \, \dot{\theta} + m_2 g_2 \cos \theta - (\varphi + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta} + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \cos 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2 \sin 2\theta - (\varphi \, \dot{z} \, \dot{\theta}^2 + 2 l_1 m_2$$

d) Consider a moving frame

fixed to link 1. At the instant

Shown in the figure, the

moving frame $0, -\chi_b y_b$ is

aligned with the base frame: $0_0 - \chi y$. The velocity of centroid C_2 relative to the moving frame $V_b = \begin{bmatrix} V_0 \cos(\theta - \phi) \\ V_0 \sin(\theta - \phi) \end{bmatrix}$ $V_b = \begin{bmatrix} V_0 \cos(\theta - \phi) \\ V_0 \sin(\theta - \phi) \end{bmatrix}$

The Coriolis force included in link 2 is then $f_{cor}^* = 2 m_2 w \times V_b^* = 2 m_2 w_0 V_0 \begin{vmatrix} -\sin(\theta - \phi) \\ \cos(\theta - \phi) \end{vmatrix}.$

where $\omega = (0, 0, \omega_0)^T$ and $\psi_b^* = \begin{pmatrix} \psi_b \\ 0 \end{pmatrix}$ are 3×1 vectors. The x. y components of f^* cor shows that the Coriolis force acts in the direction perfendicular to the center line of link 2 as shown in the figure above. The torque about the first joint axis generated by the Coriolis force is

 $T_{cor} = \Gamma_{o,cz} \times f_{cor} = \begin{vmatrix} l_{1}\cos\theta + Z\cos(\theta-\phi) & , -\sin(\theta-\phi) \\ l_{1}\sin\theta + Z\sin(\theta-\phi) & , \cos(\theta-\phi) \end{vmatrix} \cdot 2m_{2}\omega_{o}V_{o}$

For = $2(l_1\cos\phi + Z) m_2 \omega_0 V_0$ This agrees with the third term in the first equation of motion Ω , when $\dot{z} = V_0$ and $\dot{\theta} = \omega_0$.

 $\begin{cases} U_{\theta} =: k_{\theta p} (\theta_r - \theta) + k_{\theta d} (\dot{\theta}_r - \dot{\theta}) \\ U_{\tilde{z}} =: k_{\tilde{z} p} (Z_r - Z) + k_{\tilde{z} d} (\dot{Z}_r - \dot{Z}) \end{cases}$ Individual PD Controls

[C =: H₁₁(Z)· U_θ + H₁₂U_Z + h₁(Z) Zθ + G₁(θ, Z) f =: H₁₂U_θ + H₂₂U_Z + h₂(Z) Θ² + G₂(θ). Computed Control Laws.

