Dynamic Analysis

Mode 1 (10.29 Hz)

Mode 2 (64.41 Hz)

Mode 3 (180.1 Hz)

Mode 4 (352.4 Hz)

Mode 5 (581.4 Hz)

Mode 6 (637.1 Hz)

Dynamic Analysis of the cantilever beam

- An aluminum cantilever beam
- E= 70 GPa, Poisson ratio=0.33, density=2700 kg/m³
- plane stress in y-z plane

Dynamic Analysis of the cantilever beam

All responses are scaled by the factor of 100.

Dynamic Analysis of the cantilever beam

$$\omega_u = \omega_1 = 628$$
 (rad/sec)

$$\omega_{co} = 4\omega_u = 2512$$
 (rad/sec)

$$\Delta t = \frac{1}{20} T_{co} = \frac{\pi}{10\omega_{co}} = \frac{1}{8000} \cong 0.0001 \text{(sec)}$$

We want to use a reasonable mesh which gives accurate frequencies for $\omega \leq \omega_{co}$

Natural Frequencies (rad/sec)

Out of **cut-off frequency**

FE Mesh (9-node el.)	Mode 1	Mode 2	Mode 3	Mode 4	Mode 5
2 x 1	68.24	675.4	4029	4236	12334
4 x 1	65.60	438.4	1382	3548	4013
8 x 1	64.91	410.4	1167	2342	3997
16 x 1	64.72	405.0	1132	2212	3645
100 x 4	64.59	403.6	1125	2190	3588

Mode 1

Mode 2

Mode 4

MIT OpenCourseWare http://ocw.mit.edu

 $2.092 \, / \, 2.093$ Finite Element Analysis of Solids and Fluids I $_{\rm Fall} \, 2009$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.