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Lecture 23 - Solution of K¢ = AM ¢
Prof. K. J. Bathe MIT OpenCourseWare

Reading assignment: Chapters 10, 11
We have the solutions 0 < A7 < Ay < ... < ), . Recall that:
~— ~—
31 b2 bn
Ko, = \\Mo; (1)

In summary, a necessary and sufficient condition for ¢; is that Eq. (1) is satisfied. The orthogonality
conditions are not sufficient, unless ¢ = n. In other words, vectors exist which are K- and M -orthogonal,
but are not eigenvectors of the problem.

= ... ¢n] (2)
A ZETros

TM®=1 ; ®TK®=A= (3)
Zeros An

Assume we have an n x ¢ matrix P which gives us

PTMP=1 ; PTKP= A — diagonal matrix
axq qxq

Is a;; necessarily equal to ;7
aiy Z€eros

a22
Z€eros

If g = n, then A = A, P = ® with some need for rearranging. If ¢ < n, then P may contain eigenvectors
(but not necessarily), and A may contain eigenvalues.

Rayleigh-Ritz Method

This method is used to calculate approximate eigenvalues and eigenvectors.
() v Kv
V) = ——r—
P v Mwv
)\1 < 14 (U) < )\n

A1 is the lowest eigenvalue, and A, is the highest eigenvalue of the system. A; is related to the least strain
energy that can be stored with " Mwv = 1:

¢TKp1 =X\ (if o] My =1)
% v second pick \

/
4 v first pt/
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Note that twice the strain energy is obtained when the system is subjected to ¢;. If the second pick for v
gives a smaller value of p(v), then the second pick is a better approximation to ¢;.

_ g
Assume ¢ = _glfz,bi:ci, and the Ritz vectors v; are linearly independent. Also, ¥ = [ ...4,]. The z; will
be selected to minimize p(¢). Hence, calculate %p(a) = 0. (See Chapter 10.) The result is

Kz = pMx 4)
K=9TKv ; M=9TMw (5)
We solve Eq. (4) to obtain p1, po,...,p, and @1, x2,...,2,. Then our approximation to Aq,..., A\, is given

by p1,...,pq-
M<pr 3 X<p ;5 A<pg
b1 PPy et
where [ ... ¢, = ¥ [x1...x,].

nxq nXa gxgq

If the ¢ Ritz vectors span the subspace given by ¢1,..., ¢4, then we obtain (A1...A;) and (¢1...¢,).
Pictorially, an example:

If 11 and 1o are in the z-y plane, then by the Rayleigh-Ritz analysis we get ¢1, ¢2. Major shortcoming: in
general, we do not know the accuracy of (p;, ¢,).

The Subspace Iteration Method

Pick X, then calculate for k =1,2,3,...

nxq
K7k+1 = MXk (a)

This is inverse iteration with ¢ vectors. Now perform the Rayleigh-Ritz solution:

K =X, KXy 5 M= X,  MX (b)
K 1Qpi1 = My 1Qri1 Ak (c)

K1, M1, and Qg1 have dimensions ¢ x g. Recall that we have K® = M®A from Eq. (1). We then
have
k18 k1@ k+1 = A1 5 k+1 V2 k+1WE+1 =
Qr 1 KiQ A Qi M1Q 1 (d)

Finally, o
Xpt1 = Xpg1Qr41 (e)

Equations (b), (c), and (e) correspond to the use of the Rayleigh-Ritz method.
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Then, provided the vectors in X are not M-orthogonal to the eigenvectors we seek, we have (with “good”
ordering) that
A1

Apyr —
)\q
Xk+1—>[¢1 d)q]

In practice, we use ¢ vectors to calculate the p lowest eigenvalues, with (say) ¢ = 2p. In fact, the convergence
rate of the vectors is given by

Ai
Ag+1’
If p = 2 and we have a multiplicity of 5 (or higher), ¢ = 2p corresponds to not enough vectors. Ideally, we

want Ag41 to be significantly larger than Ay, so that )\’\il is much less than 1 for i = 1,...,p. The “quite
q

conservative” way is to use
q = max(2p,p + 8)

The textbook gives ¢ = min(2p, p+8), which can also be used (apply the Sturm sequence check, see textbook);
it will use less storage, but will generally need more iterations. For modern computers (specifically with
parallel processing), the above formula for ¢ is frequently more effective.

Notice that X}/, | M X1 = I because from (e),

7T -
QI Xy MX )1 Qi =1
—_—

Mk+1
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