2.092/2.093 — Finite Element Analysis of Solids & Fluids I Fall ‘09
Lecture 21 - Solution of the Generalized Eigenvalue Problem

Prof. K. J. Bathe MIT OpenCourseWare

Reading assignment: Chapters 10 and 11

MU + KU =R (1)

Aside: M could have zero masses. Then we use Gauss elimination on K to remove zero-mass DOF's, but
we denote the final matrix still as K. Then, in free vibrations:

MU + KU =0 (2)

where now M and K are assumed to be positive definite matrices, i.e. UTMU >0, UTKU > 0 for any
U # 0. Then, we obtain the eigenvalue problem

K= \M¢p — Ko¢;=\Mo; (A)
where 0 < A < X <...< Ay
—~ T~~~ ~
b1 b2 bn
Recall:
ol Mo; = d;;

o] K¢j = widij = \idy;

The Case of Multiple Eigenvalues

Assume A\; = Ao < A3, i.e. A1 has a multiplicity of 2 (m = 2), ¢»; and ¢ are two eigenvectors for A\; and Ag,
and ¢; # ¢o. Then, we have

Kag) = \iMag; («: any constant) (3)
KpB¢ps =\ MpB¢ps (5 any constant) (4)

Hence,
K (ag1 + Bg2) = MM (ad1 + Bo) (5)

Eq. (5) shows agy + B¢2 = ¢ is also an eigenvector corresponding to A\;! We can change the length of the

eigenvector so that for some -,
\T ~
(vcﬁ) M (7(25) =1

Recall we want #; + w?z; = r;, having set the mass m to 1 since d)ZTMd)j = 0;;.

If the eigenvalues for the system (A) are distinct, the eigenvectors are unique. Here, we have a two dimensional
eigenspace (A = A2). Any two M-orthogonal vectors in this space are eigenvectors and could be used as
mode shapes.

Gram-Schmidt (see textbook)

Orthogonalization is used to obtain M-orthogonal vectors. For an eigenvalue of multiplicity m, we have an
eigenspace of dimension m and can always find m M-orthogonal vectors that are in this eigenspace. We
need orthogonality to decouple Eq. (2). Next, we will discuss some solution techniques.
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Inverse Iteration

Once we have eigenvectors with ¢X M ¢, = §;;, we could simply use ¢ K¢p; = \;d;; to obtain ;.

Do we need to iterate on K¢ = A (M) to get K¢p; = A\;M¢;? Since for the general case there are no
explicit formulas available to calculate the roots of p(A) when the order of p is greater than 4, an iterative
solution method has to be used.

Iteration
Assume A\; > 0. We pick «; and use for k=1,2,...
K:f?k+1 = Muxy (a)

Tp+1

wk-‘,—l - T 1

bt bt 2
(ackJrllM mk“)

Since A1 > 0, K is positive definite and we can solve Eq. (a). We want x4 to satisfy the mass orthonor-
mality relation i£+1Miik+1 = 1. If we assume &1 M ¢, # 0, then

Ti+1 — ¢1 as k — o0

M =¢] K1, ¢t Mp =1

Proof: Consider
K-'Bk+1 = MCBk (B)

We see that (B) is equivalent to working with vectors zxy; and zg.
sz-i—l = $k+1 y @Zk = Tk

Substitute into (B):
PTK®Pz = 2T M2,

A Z€eros
A2
Rk+1 = Rk (C)

Z€eros An

’Working on (C) is equivalent to working on (B) ‘

Next, iterate with (C). Assume:

Z=[111 ... 1]
A ZETos
A2
Zo = Z7
ZETos An
Then we find
1 1 1 1
z=[x % % vl

After [ iterations,
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Only the direction of the vector is important.

Assume A; < Ap. Multiply z;41 by (/\1)l to obtain a new z;41:

This 2, convergesto [1 0 0 ... 0]as!— oo.
1
0

Note that if z; is orthogonal to 0 , we will never reach the eigenvector corresponding to A;.
0

Finally, assume A1 = A2 < A3. Then we obtain
Zi,=[1 10 ... 0]

To obtain the 2nd eigenvector for Ay = Ao, choose a starting vector x; that is M-orthogonal to ¢, and
enforce this orthogonality in each iteration. To avoid round-off error, see the textbook.

In practice, the inverse iteration method is hardly used by itself, but rather as an ingredient in a more complex
scheme. The next lecture introduces the widely used “subspace iteration method” which employs the inverse
iteration method to efficiently solve for the first few lowest frequencies/eigenvalues and modeshapes of large
systems.
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