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2.092/2.093 — Finite Element Analysis of Solids & Fluids I Fall ‘09 

Lecture 20 - Wave Propagation Response 

Prof. K. J. Bathe MIT OpenCourseWare 

Quiz #2: Closed book, 6 pages of notes, no calculators. Covers all materials including this week’s lectures. 

LwC = tw 
(C depends on material properties) 

For this system, C is the wave speed (given), Lw is the critical wavelength to be represented, tw is the total 
time for this wave to travel past a point, Le is the “effective length” of a finite element, and is equivalent to 
L
n 
w (given). To solve, we should use Δt = L

C 
e . 

Mesh 

Le should be smaller than the shortest wave length we want to pick up. To establish a mesh, we use low-order 

elements (4-node elements in 2D, 8-node elements in 3D). We use the central difference method, which 
requires stability. We need to ensure that Δt ≤ Δtcr = ω

2 
n 
. Recall that in nonlinear analysis, the wave speed 

changes. 

We know that � � 
ωn ≤ max ωn 

(m) 

m 

where ωn is the largest frequency of an assembled finite element mesh and max ωn 
(m) is the largest element 

m 
frequency of all elements in the mesh. Then we can use 

2
Δt = � � 

(m)max ωn 
m 

and conservatively, we use a slightly smaller value. 
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(m)
How to Find ωn 

For lower-order elements, we have bounds for ωn 
(m) . (See Sections 9.3/9.4 and Table 9.5 that gives formulae 

for ωn 
(m).) Proof: We know � � 

φT ΣK(m) φnn 
ω2 = �m � (a) n 

φT
n ΣM (m) φn 

m 

Σ (m) 

ωn 
2 = m

U
(b) 

Σ 
m
J (m) 

U (m) = φT K(m)φnn 

J (m) = φT M (m)φnn 

Note that K(m) is of the same size as K. Also, for an element (m), since φn is not an eigenvector for K(m): 

φT K(m)φn 
� �2 

n ω(m) 

φT M (m)φn 
≤ n 

n � �2 
U (m) ≤ J (m) ω(m) (c) n 

Plug (c) into (b) and we have � �2 
Σ (m) ωn 

(m) �� �2 
� 

ω2 m
J 

m
J (m) 

≤ max ω(m) 
n n≤ 

Σ m 

In practice, wave propagation problems are very difficult to solve, due to reflections, absorptions, and the 
many different wave types (shear waves, etc.). As mentioned, the central difference method is almost always 
used for wave propagation solutions, because wave propagation modeling needs fine meshes. 

In beams, rotational DOFs result in high frequencies, so rotational mass is frequently set to zero. If we have 
zero masses in the model, we need to use static condensation. � � � � � � � � 

Kaa Kab φa = ω2 Ma 0 φa


Kba Kbb φb 0 0 φb


No mass on b-DOFs 

Use the 2nd equation to eliminate φb from the 1st equation. 

Kbaφa + Kbbφb = 0 

φb = −K−1 
bb Kbaφa 

We obtain � � 
Kaa − KabK

−1Kba φa = ω2Maφabb 

It is the same as Gauss elimination on b-DOFs. Hence, if there are zero masses, we use static condensation 
prior to the use of the central difference method. 

All we have discussed regarding transient/dynamic analysis is also applicable (with modifications!) in heat 
transfer & fluid flow analysis. 
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Transient Heat Transfer Analysis 

The governing finite element equation is 

Cθ̇ + Kθ = Q (given 0θ) (A) 

where C is the heat capacity matrix, K is the conductivity matrix, and Q is the heat flow input vector. 

I. Mode Superposition 

Frequently, heat transfer solutions can be obtained with coarser meshes. Let’s examine the system 

Cθ̇ + Kθ = 0 (no heat flow input)


Assume

θ = e−λtφ e−λtφ = 0e−λtCφ + K�

��−λ�
��→ 

K φ = λCφ (B) 
n×n 

The eigenvalues are 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn, and the eigenvectors are φ1, φ2, . . . , φn. For constant 
temperature over the mesh, we have λ1 = 0. Also: 

φT
i Cφj = δij 

φT
i Kφj = λiδij 

We obtain the n decoupled equations. 

η̇i + λiηi = qi (i = 1, . . . , n) ; 0ηi (C) 

n 
θ = Σ φiηi 

i=1 

ΦT CΦ = I ; Φ = φ1 . . . φn 

→⎡ 
θ = Φη 0η = ΦT C 0θ ⎤ 

ΦT KΦ = 
⎢⎢⎣ 

. . . 
λi 

. . . 

⎥⎥⎦ 

q = ΦT Q 

qi = φi
T Q 

To solve Eq. (C) or perform direct integration on Eq. (A), we can use the Euler backward method or 
the Euler forward method. 

II. The Euler Backward Method 

Reading assignment: Section 9.6 

t+Δtθ̇ = 
t+Δtθ − tθ 

Δt 

Use Eq. (A) at time t + Δt to solve for t+Δtθ. This is an implicit method, and is unconditionally 
stable. Δt only needs to be selected for accuracy. 
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III. The Euler Forward Method 
tθ̇ = 

t+Δtθ − tθ 
Δt


Then, use Eq. (A) at time t.

C tθ̇ + K tθ = tQ 

1 � � 1 
C t+Δtθ = C tθ − K tθ + tQ

Δt Δt 
If C is a diagonal matrix, then no factorization is involved. The Euler forward method results in: 

1 
C t+Δtθ = tQ̂

Δt


The method is conditionally stable, and Δt must satisfy


2
Δt ≤ Δtcr = 

λn 

Recall:

MU ¨ + KU = 0


U = φ sin ω (t − τ)


U ¨ = −ω2φ sin ω (t − τ )


−Mω2φ������ sin ω (t − τ ) = 0
sin ω (t − τ ) + Kφ�����
�

Hence, Kφ = ω2Mφ is the eigenvalue problem.


2 
η̇i + λiηi = qi Δtcr = → 

λn 

2 
ẍi + ωi 

2 xi = ri → Δtcr = 
ωn 

The explicit method uses the governing equations at time t to obtain the solution at t + Δt. The 
implicit method uses the governing equations at time t + Δt to obtain the solution at t + Δt. 
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